122 research outputs found

    Water Adsorption at the Tetrahedral Titania Surface Layer of SrTiO3_3(110)-(4×\times1)

    Get PDF
    The interaction of water with oxide surfaces is of great interest for both fundamental science and applications. We present a combined theoretical [density functional theory (DFT)] and experimental [Scanning Tunneling Microscopy (STM), photoemission spectroscopy (PES)] study of water interaction with the two-dimensional titania overlayer that terminates the SrTiO3_3(110)-(4×\times1) surface and consists of TiO4_4 tetrahedra. STM, core-level and valence band PES show that H2_2O neither adsorbs nor dissociates on the stoichiometric surface at room temperature, while it dissociates at oxygen vacancies. This is in agreement with DFT calculations, which show that the energy barriers for water dissociation on the stoichiometric and reduced surfaces are 1.7 and 0.9 eV, respectively. We propose that water weakly adsorbs on two-dimensional, tetrahedrally coordinated overlayers

    Modification of the Size of Supported Clusters by Coadsorption of an Organic Compound: Gold and l-Cysteine on Rutile TiO(2)(110).

    Get PDF
    Using X-ray photoelectron spectroscopy we studied the coadsorption of the amino acid l-cysteine and gold on a rutile TiO(2)(110) surface under ultrahigh vacuum conditions. Irrespective of the deposition order, i.e., irrespective of whether l-cysteine or gold is deposited first, the primary interaction between l-cysteine and the gold clusters formed at the surface takes place through the deprotonated thiol group of the molecule. The deposition order, however, has a profound influence on the size of the gold clusters as well as their location on the surface. If l-cysteine is deposited first the clusters are smaller by a factor two to three compared to gold deposited onto the pristine TiO(2)(110) surface and then covered by l-cysteine. Further, in the former case the clusters cover the molecules and thus form the outermost layer of the sample. We also find that above a minimum gold cluster size the gold cluster/l-cysteine bond is stronger than the l-cysteine/surface bridging oxygen vacancy bond, which, in turn, is stronger than the gold cluster/vacancy bond

    Ammonia adsorption on iron phthalocyanine on Au(111): Influence on adsorbate-substrate coupling and molecular spin.

    Get PDF
    The adsorption of ammonia on Au(111)-supported monolayers of iron phthalocyanine has been investigated by x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory calculations. The ammonia-induced changes of the x-ray photoemission lines show that a dative bond is formed between ammonia and the iron center of the phthalocyanine molecules, and that the local spin on the iron atom is quenched. This is confirmed by density functional theory, which also shows that the bond between the iron center of the metalorganic complex and the Au(111) substrate is weakened upon adsorption of ammonia. The experimental results further show that additional adsorption sites exist for ammonia on the iron phthalocyanine monolayer

    Pyridine Adsorption on Single-Layer Iron Phthalocyanine on Au(111)

    Get PDF
    The adsorption of pyridine on monolayers of well-ordered, flat-lying iron phthalocyanine molecules on Au(111) is investigated by X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and density functional theory. It is found that pyridine both coordinates to the iron site of iron phthalocyanine and binds weakly to other sites. The iron coordination causes significant changes in the electronic structure of the iron phthalocyanine compound, with the implication of a change of the spin properties of the iron atoms due to the strong ligand field created by the pyridine axial ligand. Both low coverages and multilayer coverages of pyridine are considered. At low doses, the pyridine molecules are ordered, whereas in multilayers, no preferred orientation is observed. The orientation of the FePc molecules with respect to the Au(111) surface is not affected by the adsorption of pyridine
    • …
    corecore