28 research outputs found

    Do ectomycorrhizal exploration types reflect mycelial foraging strategies?

    Get PDF
    Ectomycorrhizal exploration types are commonly assumed to denote spatial foraging patterns and resource-related niches of extraradical mycelia. However, empirical evidence of the consistency of foraging strategies within exploration types is lacking. Here, we analysed ectomycorrhizal foraging patterns by incubating root-excluding ingrowth mesh bags filled with six different substrates in mature Picea abies forests. High-throughput sequencing was used to characterise ectomycorrhizal fungal communities in the mesh bags and on adjacent fine roots after one growing season. Contrary to expectations, many ectomycorrhizal genera of exploration types that are thought to produce little extraradical mycelium colonised ingrowth bags extensively, whereas genera commonly associated with ample mycelial production occurred sparsely in ingrowth bags relative to their abundance on roots. Previous assumptions about soil foraging patterns of exploration types do not seem to hold. Instead, we propose that variation in the proliferation of extraradical mycelium is related to intergeneric differences in mycelial longevity and the mobility of targeted resources

    Carbon sequestration potential and the multiple functions of Nordic grasslands

    Get PDF
    Grasslands are important carbon sinks, but the underlying processes for their soil carbon sequestration potential are still not well understood, despite much attention given to this topic. In Europe, grasslands, especially semi-natural grasslands, are also important for promoting biodiversity. Moreover, recent global reports have highlighted the importance of biodiversity in supporting climate actions. In boreal and alpine regions in the Nordic countries, grasslands also play an important role in milk and meat production and food security. Certain grassland features and management practices may enhance their soil carbon sequestration potential. Semi-natural grasslands maintained by optimized livestock grazing are vital for aboveground biodiversity and show promise for belowground biodiversity and carbon sequestration potential. It is essential to assess the multiple functions of grasslands, particularly semi-natural grasslands, to facilitate the optimization of policy measures across policy areas. Climate and biodiversity policies should not counteract each other, as some do today. This essay addresses the multiple functions of grasslands and calls for more knowledge about carbon sequestration in Nordic grasslands. This will enable the management of these ecosystems to align with climate mitigation, maintain biodiversity, and satisfy the global need for increased food supply

    Ericaceous dwarf shrubs contribute a significant but drought-sensitive fraction of soil respiration in a boreal pine forest

    Get PDF
    Boreal forests often have a dense understorey of ericaceous dwarf shrubs with ecological adaptations that contrast those of the canopy-forming trees. It is therefore important to quantify contributions by understorey shrubs to ecosystem processes and disentangle shrub- and tree-driven responses to climatic factors. We quantified soil respiration driven by the pine canopy and the ericaceous shrub understorey over 3 years, using a factorial pine root exclusion and shrub removal experiment in a mature Pinus sylvestris forest. Soil temperature and moisture-related responses of respiration attributed to autotrophs (shrubs, pine roots) and heterotrophs were compared. Additionally, we assessed effects of interactions between these functional groups on soil nitrogen availability and respiration. Understorey shrubs accounted for 22% +/- 10% of total autotrophic respiration, reflecting the ericaceous proportion of fine root production in the ecosystem. Heterotrophic respiration constituted about half of total soil respiration. Shrub-driven respiration was more susceptible to drought than heterotrophic- and pine-driven respiration. While the respiration attributed to canopy and understorey remained additive, indicating no competitive release, the plant guilds competed for soil N. Synthesis. Ericaceous understorey shrubs accounted for a small, yet significant, share of total growing season soil respiration. Overlooking understorey respiration may lead to erroneous partitioning and modelling of soil respiration mediated by functional guilds with contrasting responses to soil temperature and moisture. A larger contribution by heterotrophs and pine root-associated organisms to soil respiration under drought conditions could have important implications for soil organic matter accumulation and decomposition as the climate changes in boreal forests

    Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi

    Get PDF
    Abstract in Undetermined Soil microbes constitute an important control on nitrogen (N) turnover and retention in arctic ecosystems where N availability is the main constraint on primary production. Ectomycorrhizal (ECM) symbioses may facilitate plant competition for the specific N pools available in various arctic ecosystems. We report here our study on the N uptake patterns of coexisting plants and microbes at two tundra sites with contrasting dominance of the circumpolar ECM shrub Betula nana. We added equimolar mixtures of glycine-N, NH4+-N and NO3--N, with one N form labelled with N-15 at a time, and in the case of glycine, also labelled with C-13, either directly to the soil or to ECM fungal ingrowth bags. After 2 days, the vegetation contained 5.6, 7.7 and 9.1% (heath tundra) and 7.1, 14.3 and 12.5% (shrub tundra) of the glycine-, NH4+- and NO3--N-15, respectively, recovered in the plant-soil system, and the major part of N-15 in the soil was immobilized by microbes (chloroform fumigation-extraction). In the subsequent 24 days, microbial N turnover transferred about half of the immobilized N-15 to the non-extractable soil organic N pool, demonstrating that soil microbes played a major role in N turnover and retention in both tundra types. The ECM mycelial communities at the two tundras differed in N-form preferences, with a higher contribution of glycine to total N uptake at the heath tundra; however, the ECM mycelial communities at both sites strongly discriminated against NO3-. Betula nana did not directly reflect ECM mycelial N uptake, and we conclude that N uptake by ECM plants is modulated by the N uptake patterns of both fungal and plant components of the symbiosis and by competitive interactions in the soil. Our field study furthermore showed that intact free amino acids are potentially important N sources for arctic ECM fungi and plants as well as for soil microorganisms

    Plant and microbial uptake and allocation of organic and inorganic nitrogen related to plant growth forms and soil conditions at two subarctic tundra sites in Sweden

    Get PDF
    In order to follow the uptake and allocation of N in different plant functional types and microbes in two tundra ecosystems differing in nutrient availability, we performed a 15N-labeling experiment with three N forms and followed the partitioning of 15N label among plants, microorganisms and soil organic matter. At both sites the deciduous dwarf shrub Betula nana and the evergreen Empetrum hermaphroditum absorbed added 15N at rates in the order: NH4+ > NO3− > glycine, in contrast to the graminoid Carex species which took up added 15N at rates in the order NO3− > NH4+ > glycine. Carex transported a high proportion of 15N to aboveground parts, whereas the dwarf shrubs allocated most 15N to underground storage. Enhanced 13C in Betula nana roots represents the first field evidence of uptake of intact glycine by this important circumpolar plant. Plant and microbial uptake of label was complementary as plants took up more inorganic than organic N, while microbes preferred organic N. Microbes initially took up a large part of the added label, but over the following four weeks microbial 15N decreased by 50% and most 15N was recovered in soil organic matter, while a smaller but slowly increasing proportion was retained in plant biomass

    A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen

    Get PDF
    Tundra ecosystems are global belowground sinks for atmospheric CO2. Ongoing warming-induced encroachment by shrubs and trees risks turning this sink into a CO2 source, resulting in a positive feedback on climate warming. To advance mechanistic understanding of how shifts in mycorrhizal types affect long-term carbon (C) and nitrogen (N) stocks, we studied small-scale soil depth profiles of fungal communities and C-N dynamics across a subarctic-alpine forest-heath vegetation gradient. Belowground organic stocks decreased abruptly at the transition from heath to forest, linked to the presence of certain tree-associated ectomycorrhizal fungi that contribute to decomposition when mining N from organic matter. In contrast, ericoid mycorrhizal plants and fungi were associated with organic matter accumulation and slow decomposition. If climatic controls on arctic-alpine forest lines are relaxed, increased decomposition will likely outbalance increased plant productivity, decreasing the overall C sink capacity of displaced tundra

    Contrasting plant–soil–microbial feedbacks stabilize vegetation types and uncouple topsoil C and N stocks across a subarctic–alpine landscape

    Get PDF
    Global vegetation regimes vary in belowground carbon (C) and nitrogen (N) dynamics. However, disentangling large-scale climatic controls from the effects of intrinsic plant–soil–microbial feedbacks on belowground processes is challenging. In local gradients with similar pedo-climatic conditions, effects of plant–microbial feedbacks may be isolated from large-scale drivers. Across a subarctic–alpine mosaic of historic grazing fields and surrounding heath and birch forest, we evaluated whether vegetation-specific plant–microbial feedbacks involved contrasting N cycling characteristics and C and N stocks in the organic topsoil. We sequenced soil fungi, quantified functional genes within the inorganic N cycle, and measured 15N natural abundance. In grassland soils, large N stocks and low C : N ratios associated with fungal saprotrophs, archaeal ammonia oxidizers, and bacteria capable of respiratory ammonification, indicating maintained inorganic N cycling a century after abandoned reindeer grazing. Toward forest and heath, increasing abundance of mycorrhizal fungi co-occurred with transition to organic N cycling. However, ectomycorrhizal fungal decomposers correlated with small soil N and C stocks in forest, while root-associated ascomycetes associated with small N but large C stocks in heath, uncoupling C and N storage across vegetation types. We propose that contrasting, positive plant–microbial feedbacks stabilize vegetation trajectories, resulting in diverging soil C : N ratios at the landscape scale.publishedVersio

    A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest

    Get PDF
    Boreal forest soils are important global carbon sinks, with significant storage in the organic topsoil. Decomposition of these stocks requires oxidative enzymes, uniquely produced by fungi. Across Swedish boreal forests, we found that local carbon storage in the organic topsoil was 33% lower in the presence of a group of closely related species of ectomycorrhizal fungi - Cortinarius acutus s.l.. This observation challenges the prevailing view that ectomycorrhizal fungi generally act to increase carbon storage in soils but supports the idea that certain ectomycorrhizal fungi can complement free-living decomposers, maintaining organic matter turnover, nutrient cycling and tree productivity under nutrient-poor conditions. The indication that a narrow group of fungi may exert a major influence on carbon cycling questions the prevailing dogma of functional redundancy among microbial decomposers. Cortinarius acutus s.l. responds negatively to stand-replacing disturbance, and associated population declines are likely to increase soil carbon sequestration while impeding long-term nutrient cycling

    Soil moisture and fertility drive earthworm diversity in north temperate semi-natural grasslands

    Get PDF
    Intensive management of arable land reduces earthworm density and diversity. This may impair earthwormmediated soil functions, such as nutrient mineralization and soil structure formation. To sustain earthworm source populations for re-colonization of cultivated soils, it is therefore important to preserve habitats with high earthworm diversity. Semi-natural grasslands, with a long continuity without soil disturbance, could serve as such earthworm diversity reservoirs. This is particularly important in mixed agricultural landscapes with elements of multiple land uses. Nonetheless, earthworm density and diversity vary greatly among grasslands. To preserve and optimally manage the most suitable grasslands, knowledge about which grassland characteristics best explain earthworm diversity is needed. Additionally, we have a limited picture of earthworm diversity in general, because previous studies have neglected juvenile earthworms and cryptic species. The juvenile fraction commonly comprises the main part of earthworm samples, whereas morphologically inseparable cryptic species account for an unknown fraction. This fraction is of particular importance, as juveniles reflect the local reproductive and regeneration potential of earthworm populations and communities. To determine the full species composition of earthworm communities, we sampled earthworms from 28 semi-natural grasslands in southcentral Sweden and identified them to species by DNA barcoding. To test how grassland characteristics explain earthworm density, diversity, and community composition, we measured several characteristics of soils, vegetation, and management of the grasslands, and descriptors of the surrounding landscape. DNA barcoding revealed nearly twice as many species as were identified morphologically. Earthworm densities were higher in grasslands with higher Ellenberg moisture indicator values and lower soil C:N ratios. The diversity and occurrence of many earthworm species was also higher in grasslands with higher soil moisture indicator values and lower C:N ratios, and further increased with habitat heterogeneity. Certain species occurred more likely in grasslands with higher grazing intensity. Epigeic earthworms, which live in and feed on surface litter, were more common in grasslands with higher moisture indicator values and SOM content. Thus, dry and relatively unproductive semi-natural grasslands, which are common in Sweden, are unlikely to sustain high earthworm diversity - a pattern contrasting to previously reported plant diversity responses. Instead, earthworm diversity seems concentrated to more productive grazed grasslands, with large within-grassland heterogeneity. Therefore, we highlight the importance of considering soil animals in conservation policies for semi-natural grasslands

    Optimized metabarcoding with Pacific biosciences enables semi-quantitative analysis of fungal communities

    Get PDF
    Recent studies have questioned the use of high-throughput sequencing of the nuclear ribosomal internal transcribed spacer (ITS) region to derive a semi-quantitative representation of fungal community composition. However, comprehensive studies that quantify biases occurring during PCR and sequencing of ITS amplicons are still lacking. We used artificially assembled communities consisting of 10 ITS-like fragments of varying lengths and guanine-cytosine (GC) contents to evaluate and quantify biases during PCR and sequencing with Illumina MiSeq, PacBio RS II and PacBio Sequel I technologies. Fragment length variation was the main source of bias in observed community composition relative to the template, with longer fragments generally being under-represented for all sequencing platforms. This bias was three times higher for Illumina MiSeq than for PacBio RS II and Sequel I. All 10 fragments in the artificial community were recovered when sequenced with PacBio technologies, whereas the three longest fragments (> 447 bases) were lost when sequenced with Illumina MiSeq. Fragment length bias also increased linearly with increasing number of PCR cycles but could be mitigated by optimization of the PCR setup. No significant biases related to GC content were observed. Despite lower sequencing output, PacBio sequencing was better able to reflect the community composition of the template than Illumina MiSeq sequencing
    corecore