37 research outputs found

    An Enhanced DC-Bus Voltage-Control Loop for Single-Phase Grid-Connected DC/AC Converters

    Full text link
    © 1986-2012 IEEE. This paper presents a method to enhance the dc-bus voltage-control loop of a single-phase grid-connected dc/ac converter, which improves its responses in terms of oscillation on its dc-bus voltage as well as its output ac current. Conventionally, the double-frequency (2-f) ripple is reduced by using a large electrolyte capacitor, which increases the cost and size of the system. A state-of-the-art approach is to use a notch filter (NF) to block the 2-f ripple in the voltage-control loop. This can significantly reduce the capacitor size. The existing presentations of this method, however, do not integrate the internal dynamics of the NF into consideration. This paper proposes a new way of implementing the NF, which allows integration of its internal variables into the control loop. The resulted system exhibits enhanced transient responses at both the dc-bus voltage and the output ac current. The proposed method is analyzed in detail and its effectiveness is verified through simulations and experimental results

    A robust vector current controller with negative-sequence current capability for grid-connected inverters

    Get PDF
    This paper presents a vector current controller (in the synchronous reference, or the dq, frame) with negative-sequence current injection capability for three-phase grid-connected converters. This capability is desired for the operation of the converter during unbalanced conditions and also for a certain type of islanding detection. The proposed controller first determines the double-frequency current references and then uses a sixth-order two-input two-output proportional-integral-resonance (PIR) structure, which is optimally designed. Compared with the existing similar approaches, the proposed controller has a simpler structure and more robust performance, e.g., against system parameter uncertainties and weak grid conditions. The proposed controller is developed for converters with both the L-type and LCL-type filters. For the LCL-type converter, a suboptimal partial state feedback control is also proposed to achieve robust stability and active damping of resonance poles without requiring additional sensors. Detailed experimental results are presented to illustrate the properties and performances of the proposed controller

    An enhanced control system for single-phase inverters interfaced with weak and distorted grids

    Full text link
    © 2019 IEEE. This paper presents an enhanced current controller for improving the performance of a class of single-phase grid-connected inverters operating in weak and distorted grid conditions. An inverter designed to operate at normal (strong or stiff and clean) grid conditions may not perform satisfactorily during weak and distorted grid conditions. One major reason is the interfering dynamics of the synchronization or phase-locked loop (PLL). This paper proposes an enhanced control structure for a popular class of single-phase inverters to address this problem. The proposed idea is to include the PLL state variables into the main inverter controller thereby minimizing the undesirable interactions of the PLL with the other components. A method for optimally designing the controller gains is also proposed. Compared to the conventional one, the proposed controller is shown to have a more robust performance over a substantially wider range of weak and distorted grid conditions. Extensive simulation and experimental results are presented to validate the proposed controls

    A novel single-phase shunt active power filter based on a current-source converter with reduced Dc-Link

    Get PDF
    Nowadays, the majority of electronic equipment behave as nonlinear loads, introducing Power Quality (PQ) problems into the Power Grid (PG), namely, current harmonics and low power factor. These PQ problems contribute to the reduction of the efficiency of the transmission and distribution PG, as well as induce the malfunctioning of sensitive loads connected to the PG. Therefore, the development of equipment able to mitigate these PQ problems is extremely important. In this context, this paper presents a novel single-phase Shunt Active Power Filter (SAPF) based on a current-source converter, where the key differencing factor, when compared with the conventional approach, is the reduced dc-link. As the proposed topology requires a reduced dc-link, it represents a relevant advantage, since a typical current-source converter needs an inductor with a high inductance in dc-link, which results in higher losses, costs and component sizing. The proposed SAPF with reduced dc-link is introduced in detail along the paper and a comprehensive comparison with the conventional SAPF is established based on computer simulations. Besides, an experimental validation was carried-out with a developed laboratory prototype, validating the main advantages of the proposed SAPF with reduced dc-link.This work has been supported by FCT – Fundação para a Ciência e Tecnologia with-in the Project Scope: UID/CEC/00319/2019. This work has been supported by the FCT Project QUALITY4POWER PTDC/EEI-EEE/28813/2017, and by the FCT Project newERA4GRIDs PTDC/EEI-EEE/30283/2017

    A novel three-phase magnitude-phase-locked loop system

    No full text
    corecore