21 research outputs found

    Energy Efficient Node Deployment in Wireless Ad-hoc Sensor Networks

    Full text link
    We study a wireless ad-hoc sensor network (WASN) where NN sensors gather data from the surrounding environment and transmit their sensed information to MM fusion centers (FCs) via multi-hop wireless communications. This node deployment problem is formulated as an optimization problem to make a trade-off between the sensing uncertainty and energy consumption of the network. Our primary goal is to find an optimal deployment of sensors and FCs to minimize a Lagrange combination of the sensing uncertainty and energy consumption. To support arbitrary routing protocols in WASNs, the routing-dependent necessary conditions for the optimal deployment are explored. Based on these necessary conditions, we propose a routing-aware Lloyd algorithm to optimize node deployment. Simulation results show that, on average, the proposed algorithm outperforms the existing deployment algorithms.Comment: 7 pages, 6 figure

    Node Deployment in Heterogeneous Rayleigh Fading Sensor Networks

    Full text link
    We study a heterogeneous Rayleigh fading wireless sensor network (WSN) in which densely deployed sensor nodes monitor an environment and transmit their sensed information to base stations (BSs) using access points (APs) as relays to facilitate the data transfer. We consider both large-scale and small-scale propagation effects in our system model and formulate the node deployment problem as an optimization problem aimed at minimizing the wireless communication network's power consumption. By imposing a desired outage probability constraint on all communication channels, we derive the necessary conditions for the optimal deployment that not only minimize the power consumption, but also guarantee all wireless links to have an outage probability below the given threshold. In addition, we study the necessary conditions for an optimal deployment given ergodic capacity constraints. We compare our node deployment algorithms with similar algorithms in the literature and demonstrate their efficacy and superiority

    Energy-Efficient Node Deployment in Static and Mobile Heterogeneous Multi-Hop Wireless Sensor Networks

    Full text link
    We study a heterogeneous wireless sensor network (WSN) where N heterogeneous access points (APs) gather data from densely deployed sensors and transmit their sensed information to M heterogeneous fusion centers (FCs) via multi-hop wireless communication. This heterogeneous node deployment problem is modeled as an optimization problem with total wireless communication power consumption of the network as its objective function. We consider both static WSNs, where nodes retain their deployed position, and mobile WSNs where nodes can move from their initial deployment to their optimal locations. Based on the derived necessary conditions for the optimal node deployment in static WSNs, we propose an iterative algorithm to deploy nodes. In addition, we study the necessary conditions of the optimal movement-efficient node deployment in mobile WSNs with constrained movement energy, and present iterative algorithms to find such deployments, accordingly. Simulation results show that our proposed node deployment algorithms outperform the existing methods in the literature, and achieves a lower total wireless communication power in both static and mobile WSNs, on average

    Using Quantization to Deploy Heterogeneous Nodes in Two-Tier Wireless Sensor Networks

    Get PDF
    We study a heterogeneous two-tier wireless sensor network in which N heterogeneous access points (APs) collect sensing data from densely distributed sensors and then forward the data to M heterogeneous fusion centers (FCs). This heterogeneous node deployment problem is modeled as a quantization problem with distortion defined as the total power consumption of the network. The necessary conditions of the optimal AP and FC node deployment are explored in this paper. We provide a variation of Voronoi Diagram as the optimal cell partition for this network, and show that each AP should be placed between its connected FC and the geometric center of its cell partition. In addition, we propose a heterogeneous two-tier Lloyd algorithm to optimize the node deployment. Simulation results show that our proposed algorithm outperforms the existing clustering methods like Minimum Energy Routing, Agglomerative Clustering, and Divisive Clustering, on average
    corecore