50 research outputs found

    Implementation of Linear Stability Theory on Hollow Cone-shaped Liquid Sheet

    Get PDF
    Surface instability of a swirling liquid sheet emanating from a centrifugal injector in presence of external and internal gas flows is studied in this paper. A three-dimensional flow for the liquid sheet and two-dimensional flows for external and internal gas flows are considered. The set of equations involved in this analysis differs from the earlier analyzes. In previous studies, a cylindrical liquid sheet has been considered to implement the linear theory but in this study, the linear stability theory is implemented on a cone-shaped liquid sheet for different cone angles. Actually more over than axial and tangential movements, the radial movements of liquid sheet and gas flows are considered in the present model. Due to complexity of the derived governing equations, semi-analytical and numerical methods were applied to solve them. The case study is oxidizer injector of rocket engines. Implementation of linear stability theory on a hollow cone-shaped liquid sheet better can predict instability phenomenon than the general linear stability analysis for this type of liquid sheets. The results show very close agreement with available experimental data

    Estimating compressive strength of concrete containing untreated coal waste aggregates using ultrasonic pulse velocity

    Get PDF
    In recent years, the overuse and exploitation of coal resources as fuel in industry has caused many environmental problems as well as changes in the ecosystem. One way to address this issue is to recycle these materials as an alternative to aggregates in concrete. Recently, non-destructive tests have also been considered by the researchers in this field. As there is limited work on the evaluation of the compressive strength of concrete containing coal waste using non-destructive tests, the current study aims to estimate the compressive strength of concrete containing untreated coal waste aggregates using the ultrasonic pulse velocity (UPV) technique as a non-destructive testing approach. For this purpose, various concrete parameters such as the compressive strength and UPV were investigated at different ages of concrete with different volume replacements of coarse and fine aggregates with coal waste. The test results indicate that 5% volume replacement of natural aggregates with untreated coal waste improves the average compressive strength and UPV of the concrete mixes by 6 and 1.2%, respectively. However, these parameters are significantly reduced by increasing the coal waste replacement level up to 25%. Furthermore, a general exponential relationship was established between the compressive strength and the UPV associated with the entire tested concrete specimens with different volume replacement levels of coal waste at different ages. The proposed relationship demonstrates a good correlation with the experimental results

    Experimental and informational modeling study on flexural strength of eco-friendly concrete incorporating coal waste

    Get PDF
    Construction activities have been a primary cause for depleting natural resources and are associated with stern environmental impact. Developing concrete mixture designs that meet project specifications is time-consuming, costly, and requires many trial batches and destructive tests that lead to material wastage. Computational intelligence can offer an eco-friendly alternative with superior accuracy and performance. In this study, coal waste was used as a recycled additive in concrete. The flexural strength of a large number of mixture designs was evaluated to create an experimental database. A hybrid artificial neural network (ANN) coupled with response surface methodology (RSM) was trained and employed to predict the flexural strength of coal waste-treated concrete. In this process, four influential parameters including the cement content, water-to-cement ratio, volume of gravel, and coal waste replacement level were specified as independent input variables. The results show that concrete incorporating 3% recycled coal waste could be a competitive and eco-efficient alternative in construction activities while attaining a superior flexural strength of 6.7 MPa. The RSM-modified ANN achieved superior predictive accuracy with an RMSE of 0.875. Based on the experimental results and model predictions, estimating the flexural strength of concrete incorporating waste coal using the RSM-modified ANN model yielded superior accuracy and can be used in engineering practice to save the effort, cost, and material wastage associated with trial batches and destructive laboratory testing while producing mixtures with enhanced flexural strength

    An Artificial Neural Network and Taguchi Method Integrated Approach to Predicting the Local Scour Depth around the Bridge Pier during Flood Event

    Get PDF
    Experiment design is believed to be an important part of investigating an engineering phenomenon for characterizing and optimizing the process. In this study, the Taguchi method (TM) reduced the number of experiments and was used to analyze the results of an artificial neural network (ANN) and find the optimal combination of the relevant parameters in the ANN. Accordingly, the phenomenon of the local scour depth around the bridge during flood events was considered as a case study. The study results indicated that TM could reduce the number of experiments compared to the previous original study and the full factorial method by 28% and 67%, respectively. According to TM, the flow intensity at the hydrograph peak was the most effective parameter providing the optimal state (minimum scour depth). Additionally, an ANN with three hidden layers and the main parameters, including several neurons in the first and second hidden layers, training function, and transfer function, was introduced. Adjusting the input parameters of the ANN, TM led to the emergence of networks with a reasonable correlation coefficient of R= 0.952. Finally, the results demonstrated that the transfer function had the most significant effect on the results of the ANN

    Data on using macro invertebrates to investigate the biological integrity of permanent streams located in a semi-arid region

    Get PDF
    Abstract The aquatic ecosystems are continuously endangered due to variety of hazardous chemicals containing different toxic agents which can be emitted from anthropogenic sources. Besides the increasing of human population, various kinds of contaminants enter into the surface water resources. The aim of the present study was to investigate the abundance and diversity of macro invertebrates in two permanent streams located in the northern part of Tehran. The biological integrity of the streams was determined by manual sampling approach at five points. The distances between the sampling points were at least 2 km. The bio indicator organisms, organic pollution, and dissolved oxygen were measured. The different types of benthic invertebrates such as riffle beetle, midge and caddish fly larvae, dragon fly, may fly and stone fly nymph, riffle beetle adult, pyralid caterpillar, leech, and pouch snail were identified. It can be concluded that, the identified benthic macro invertebrates can be served as appropriate biological indicator in the studied area. Keywords Biological integrity Tehran Macro invertebrate

    Performance, kinetic, and biodegradation pathway evaluation of anaerobic fixed film fixed bed reactor in removing phthalic acid esters from wastewater

    Get PDF
    Emerging and hazardous environmental pollutants like phthalic acid esters (PAEs) are one of the recent concerns worldwide. PAEs are considered to have diverse endocrine disrupting effects on human health. Industrial wastewater has been reported as an important environment with high concentrations of PAEs. In the present study, four short-chain PAEs including diallyl phthalate (DAP), diethyl phthalate (DEP), dimethyl phthalate (DMP), and phthalic acid (PA) were selected as a substrate for anaerobic fixed film fixed bed reactor (AnFFFBR). The process performances of AnFFFBR, and also its kinetic behavior, were evaluated to find the best eco-friendly phthalate from the biodegradability point of view. According to the results and kinetic coefficients, removing and mineralizing of DMP occurred at a higher rate than other phthalates. In optimum conditions 92.5, 84.41, and 80.39% of DMP, COD, and TOC were removed. DAP was found as the most bio-refractory phthalate. The second-order (Grau) model was selected as the best model for describing phthalates removal

    Carbohydrate sources for macadamia shoot development

    No full text
    The effect of carbohydrate sources on vegetative growth in macadamia at two major flushing times (March and September in southern hemisphere) were studied indirectly by measuring the growth rate of individual flushes in response to girdling and defoliation treatments during the vegetative growth period. Internode length and girth of a single flush were affected significantly by girdling and defoliation treatments. Two sources of carbohydrate were hypothesised for vegetative growth of the single flush; reserved carbohydrate and current photosynthate. The contribution of these sources to vegetative growth were defined and calculated from the differences between the combinations of girdling and defoliation treatments over time. Based on the results for two major flushing times, reserved carbohydrate contributes more to vegetative growth of macadamia than current photosynthesis

    Allometric relationships for vegetative growth flush in pruned stems of macadamia (Macadamia integrifolia): effects of carbohydrate source and season

    No full text
    Hedging is used to control tree size in macadamia orchards, but the effects on subsequent shoot growth and floral initiation may impair fruit production. Four-year-old grafted macadamia (Macadamia integrifolia Maiden & Betche) trees were subjected to pruning of the most recent seasonal shoot in autumn and spring. Factorial combinations of treatments included girdling or not girdling near the base of the previous season's (parent) shoot; removal of all except two, four or six leaves from the parent shoot; and defoliation or no defoliation of the shoot that appeared after pruning. Initial numbers and dimensions of flush-shoot internodes were similar for all branch treatments in autumn and for girdled branches in spring, and were smaller than half those for non-girdled stems in spring. Later flush-shoot growth depended on the number of leaves retained on the parent shoot, the presence or absence of a connection to the tree below the parent shoot, and on the season, declining with limiting growing degree-days in winter and accelerating with increasing growing degree-days in summer. In both seasons, reserves beyond the parent (previous season's) shoot contributed the major source of carbohydrate for continuing flush-shoot growth, and particularly the growth of leaves. The combinations of seasonal conditions, shoot parameters before the commencement of flush-shoot growth, and flush-shoot morphology permit the inference of allometric relationships that can be applied to the quantitative modelling of vegetative shoot morphology and growth in macadamia
    corecore