18 research outputs found
The Salivary Secretome of the Tsetse Fly Glossina pallidipes (Diptera: Glossinidae) Infected by Salivary Gland Hypertrophy Virus
Tsetse fly (Diptera; Glossinidae) transmits two devastating diseases to farmers (human African Trypanosomiasis; HAT) and their livestock (Animal African Trypanosomiasis; AAT) in 37 sub-Saharan African countries. During the rainy seasons, vast areas of fertile, arable land remain uncultivated as farmers flee their homes due to the presence of tsetse. Available drugs against trypanosomiasis are ineffective and difficult to administer. Control of the tsetse vector by Sterile Insect Technique (SIT) has been effective. This method involves repeated release of sterilized males into wild tsetse populations, which compete with wild type males for females. Upon mating, there is no offspring, leading to reduction in tsetse populations and thus relief from trypanosomiasis. The SIT method requires large-scale tsetse rearing to produce sterile males. However, tsetse colony productivity is hampered by infections with the salivary gland hypertrophy virus, which is transmitted via saliva as flies take blood meals during membrane feeding and often leads to colony collapse. Here, we investigated the salivary gland secretome proteins of virus-infected tsetse to broaden our understanding of virus infection, transmission and pathology. By this approach, we obtain insight in tsetse-hytrosavirus interactions and identified potential candidate proteins as targets for developing biotechnological strategies to control viral infections in tsetse colonies
Genome Sequences and Characterization of Chicken Astrovirus and Avian Nephritis Virus from Tanzanian Live Bird Markets
The enteric chicken astrovirus (CAstV) and avian nephritis virus (ANV) are the type species of the genus Avastrovirus (AAstV; Astroviridae family), capable of causing considerable production losses in poultry. Using next-generation sequencing of a cloacal swab from a backyard chicken in Tanzania, we assembled genome sequences of ANV and CAstV (6918 nt and 7318 nt in length, respectively, excluding poly(A) tails, which have a typical AAstV genome architecture (5′-UTR-ORF1a-ORF1b-ORF2-‘3-UTR). They are most similar to strains ck/ANV/BR/RS/6R/15 (82.72%) and ck/CAstV/PL/G059/14 (82.23%), respectively. Phylogenetic and sequence analyses of the genomes and the three open reading frames (ORFs) grouped the Tanzanian ANV and CAstV strains with Eurasian ANV-5 and CAstV-Aii viruses, respectively. Compared to other AAstVs, the Tanzanian strains have numerous amino acid variations (substitutions, insertions and deletions) in the spike region of the capsid protein. Furthermore, CAstV-A has a 4018 nt recombinant fragment in the ORF1a/1b genomic region, predicted to be from Eurasian CAstV-Bi and Bvi parental strains. These data should inform future epidemiological studies and options for AAstV diagnostics and vaccines
Special issue on enhancing vector refractoriness to trypanosome infection-foreword
With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis