148 research outputs found

    Gas Chromatographic Method for the Quantitative Determination of a Hydrolytic Degradation Impurity in Busulfan Injectable Products.

    Get PDF
    An efficient and stability-indicating method has been developed and validated for the quantitative determination of tetrahydrofuran (THF), a hydrolytic degradation impurity, in Busulfan injectable pharmaceutical products by using gas chromatograph equipped with a liquid autosampler and a flame ionization detector. The chromatographic separation was performed on a fused silica capillary (Stabilwax; 60 m length × 0.32 mm i.d., 0.5 µm film thickness) column. The methodology was validated in accordance with regulatory guidelines. The proposed method was found to be specific, stable, precise, linear, accurate, robust, and rugged in the concentration range from 4 to 1,080 ppm for THF. The developed method was successfully applied to determine the THF content in Busulfan injectable pharmaceutical products

    The Nobel Prize in Chemistry 2004: 'ubiquitous' quality control of life

    Get PDF
    The Nobel Prize in Chem. for 2004 is shared by Aaron Ciechanover, Avram Hershko and Irwin Rose, who made fundamental discoveries concerning how cells regulate the breakdown of cellular proteins with extreme specificity. The three biochemists discovered ubiquitin-​mediated proteolysis, a process where an enzyme system tags unwanted proteins with many mols. of a small protein called ubiquitin and then sends then to the proteasome where they are broken down

    Degradation of ethylbenzene by free and immobilized Pseudomonas fluorescens-CS2

    Get PDF
    Pseudomonas fluorescens-CS2 metabolized ethylbenzene as the sole source of carbon and energy. The involvement of catechol as the hydroxylated intermediate during the biodegradation of ethylbenzene was established by TLC, HPLC and enzyme analysis. The specific activity of Catechol 2,3-dioxygenase in the cell free extracts of P. fluorescens-CS2 was determined to be 0.428 μmoles min−1 mg−1 protein. An aqueous-organic, Two-Phase Batch Culture System (TPBCS) was developed to overcome inhibition due to higher substrate concentrations. In TPBCS, P. fluorescens-CS2 demonstrated ethylbenzene utilization up to 50 mM without substrate inhibition on inclusion of n-decanol as the second phase. The rate of ethylbenzene metabolism in TPBCS was found enhance by fivefold in comparison with single phase system. Alternatively the alginate, agar and polyacrylamide matrix immobilized P. fluorescens-CS2 cells efficiently degraded ethylebenzene with enhanced efficiency compared to free cell cultures in single and two-phase systems. The cells entrapped in ployacrylamide and alginate were found to be stable and degradation efficient for a period of 42 days where as agar-entrapped P. fluorescens was stable and efficient a period of 36 days. This demonstrates that alginate and polyacrylamide matrices are more promising as compared to agar for cell immobilization

    Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review

    Get PDF
    A large number of enzymes from bacteria, fungi, and plants have been reported to be involved in the biodegradation of toxic organic pollutants. Bioremediation is a cost effective and nature friendly biotechnology that is powered by microbial enzymes. The research activity in this area would contribute towards developing advanced bioprocess technology to reduce the toxicity of the pollutants and also to obtain novel useful substances. The information on the mechanisms of bioremediation-related enzymes such as oxido-reductases and hydrolases have been extensively studied. This review attempts to provide descriptive information on the enzymes from various microorganisms involved in the biodegradation of wide range of pollutants, applications, and suggestions required to overcome the limitations of their efficient use

    Synthesis, characterization and pharmacological evaluation of palmitic acid derivatives of salicylic acid and anthranilic acid

    Get PDF
    In the present study, salicylic acid and anthranilic acid were modified as lipids palmitoylsalicylic acid (PSA) and N-​palmitoylanthranilic acid (N-​PAA) by a simple esterification​/amidation reaction of the resp. acid with palmitoyl chloride. On screening for the pharmacol. activity, PSA exhibited potent and persistent analgesic and antiinflammatory effects, while N-​PAA, demonstrated novel analgesic and antipyretic effects

    EVALUATING THE ANTIPROLIFERATIVE POTENTIAL OF METHONOLIC LEAF EXTRACT OF CASSIA NIGRICANS

    Get PDF
    Objective: It is well established that plants have always been useful source as anticancer compounds. This study was attempted to investigate the in vitro anti-cancer potential of methonolic extract of Cassia nigricans on breast cancer MCF-7 cell lines.Methods: The methanol extract of C. nigricans was screened for its anti-proliferative effect against MCF-7 (Breast cancer) cell lines using MCF-7 cells seeded 96 well plates.Results: Extract was exposed with MCF-7 cell lines for 24h and 72h at a range of increasing concentrations (0-500μg/ml) in order to obtain a dose-response graph and IC50 value. The C. nigricans extract showed cytotoxic effect in MCF-7cells with IC50 of 82.6μg/ml.Conclusion: The C. nigricans extract showed effective cytotoxic activity in a dose and time dependent manner. Future work will be interesting to know the chemical composition and also better understand the mechanism of action present in the extract for developing it as drug for therapeutic application.Â

    In vitro selection of salt-tolerant Ailanthus altissimaSwingle

    Get PDF
    Salt-tolerant cell lines of Ailanthus altissima were selected from callus derived protoplasts. Murashige–Skoog (MS) liquid medium incorporated with various concentrations of NaCl was employed to enrich salt-tolerant A. altissima cell lines. Salt-resistant A. altissima cells were transferred on MS solid medium supplemented with 2.5 μM 2,4-dichlorophenoxy acetic acid (2,4-D), 0.5 μM benzyl adenine (BA) and various NaCl concentrations. The callus was cultured on MS medium containing NaCl for 5 months, to determine the survival rate as an index of salt tolerance. The measurement of growth parameters for salt-tolerant cells showed that the selected plant cell lines grew better than the unselected ones at all levels of NaCl tested. The salt-tolerant callus accumulated proline in correlation to the concentration of salts. Media supplemented with BA induced shoot differentiation of salt-resistant A. altissima cells

    Enhanced production of tropane alkaloids in transgenic Scopolia parviflora hairy root cultures over-expressing putrescine N-methyl transferase (PMT) and hyoscyamine-6β-hydroxylase (H6H)

    Get PDF
    Scopolia parviflora adventitious roots were metabolically engineered by co-expression of the two gene putrescine N-methyl transferase (PMT) and hyoscyamine-6β-hydroxylase (H6H) cDNAs with the aid of Agrobacterium rhizogenes. The transformed roots developed into morphologically distinct S. parviflora PMT1 (SpPMT1), S. parviflora PMT1 (SpPMT2), and S. parviflora H6H (SpH6H) transgenic hairy root lines. Consequent to the introduction of these key enzyme genes, the production of the alkaloids hyoscyamine and scopolamine was enhanced. Among the transgenic hairy root lines, SpPMT2 line possessed the highest growth index. The treatment of transgenic hairy roots with growth regulators further enhanced the production of scopolamine. Thus, the results suggest that PMT1, PMT2, and H6H genes may not only be involved in the metabolic regulation of alkaloid production but also that these genes may play a role in the root development

    Selection of high berberine yielding phellodendron insulare nak. lines and the antimicrobial activity of their extracts

    Get PDF
    High berberine yielding Phellodendron insulare Nak. lines were selected by aggregate cloning method and the antimicrobial activity of their extracts was assessed. The berberine producing cork tree lines were selected by adopting a colorimetric method. In all 300 high berberine producing lines were selected with a colorimetric reagent containing 5M HCl and H2O2 and established from dissociated cell aggregates. The crude extracts from these lines showed antibacterial activities against tested Escherichia coli, Staphylococcus aureus, Salmonella typhimulium, and Listeria monocytogenes. The cork tree extracts were found to be inhibitory to these test organisms. Further the antimicrobial activity of plant extracts was on par with the berberine isolated from the extracts from native cork trees. These results have potential for developing alternative plant products as antimicrobial substances for application in agriculture and food industry
    • …
    corecore