26 research outputs found

    Tumor Cell-Driven Extracellular Matrix Remodeling Drives Haptotaxis during Metastatic Progression

    Get PDF
    Fibronectin (FN) is a major component of the tumor microenvironment, but its role in promoting metastasis is incompletely understood. Here we show that FN gradients elicit directional movement of breast cancer cells, in vitro and in vivo. Haptotaxis on FN gradients requires direct interaction between α5β1 integrin and Mena, an actin regulator, and involves increases in focal complex signaling and tumor-cell-mediated extracellular matrix (ECM) remodeling. Compared to Mena, higher levels of the pro-metastatic MenaINV isoform associate with α5, which enables 3D haptotaxis of tumor cells towards the high FN concentrations typically present in perivascular space and in the periphery of breast tumor tissue. MenaINV and FN levels were correlated in two breast cancer cohorts, and high levels of MenaINV were significantly associated with increased tumor recurrence as well as decreased patient survival. Our results identify a novel tumor-cell-intrinsic mechanism that promotes metastasis through ECM remodeling and ECM guided directional migration

    Constitutively decreased TGFBR1 allelic expression is a common finding in colorectal cancer and is associated with three TGFBR1 SNPs

    Get PDF
    Purpose: Constitutively decreased TGFBR1 allelic expression is emerging as a potent modifier of colorectal cancer risk in mice and humans. This phenotype was first observed in mice, then in lymphoblastoid cell lines from patients with microsatellite stable colorectal tumors. Patients and Methods: We assessed the frequency of constitutively decreased TGFBR1 allelic expression and association with SNPs covering the TGFBR1 locus using RNA and DNA extracted from the peripheral blood lymphocytes of 118 consecutive patients with biopsy-proven adenocarcinoma of the colon or the rectum. Results: We found that 11(9.3%) of 118 patients exhibited decreased TGFBR1 allelic expression (TGFBR1 ASE). TGFBR1 ASE was strongly associated with three SNPs in linkage disequilibrium with each other: rs7034462 (p = 7.2 × 10-4), TGFBR1*6A (p = 1.6 × 10-4) and rs11568785 (p = 1.4 × 10-4). Conclusion: These results confirm the high prevalence of constitutively decreased TGFBR1 allelic expression among patients with colorectal cancer. The association of this phenotype with TGFBR1*6A, rs7034462 and rs1156875 suggests an association between TGFBR1 SNPs and colorectal cancer, which warrants additional studies

    Identification of Estrogen Receptor Dimer Selective Ligands Reveals Growth-Inhibitory Effects on Cells That Co-Express ERα and ERβ

    Get PDF
    Estrogens play essential roles in the progression of mammary and prostatic diseases. The transcriptional effects of estrogens are transduced by two estrogen receptors, ERα and ERβ, which elicit opposing roles in regulating proliferation: ERα is proliferative while ERβ is anti-proliferative. Exogenous expression of ERβ in ERα-positive cancer cell lines inhibits cell proliferation in response to estrogen and reduces xenografted tumor growth in vivo, suggesting that ERβ might oppose ERα's proliferative effects via formation of ERα/β heterodimers. Despite biochemical and cellular evidence of ERα/β heterodimer formation in cells co-expressing both receptors, the biological roles of the ERα/β heterodimer remain to be elucidated. Here we report the identification of two phytoestrogens that selectively activate ERα/β heterodimers at specific concentrations using a cell-based, two-step high throughput small molecule screen for ER transcriptional activity and ER dimer selectivity. Using ERα/β heterodimer-selective ligands at defined concentrations, we demonstrate that ERα/β heterodimers are growth inhibitory in breast and prostate cells which co-express the two ER isoforms. Furthermore, using Automated Quantitative Analysis (AQUA) to examine nuclear expression of ERα and ERβ in human breast tissue microarrays, we demonstrate that ERα and ERβ are co-expressed in the same cells in breast tumors. The co-expression of ERα and ERβ in the same cells supports the possibility of ERα/β heterodimer formation at physio- and pathological conditions, further suggesting that targeting ERα/β heterodimers might be a novel therapeutic approach to the treatment of cancers which co-express ERα and ERβ

    Circulating Tumor Cells in Metastatic Breast Cancer: A Prognostic and Predictive Marker

    No full text
    The role of circulating tumor cells (CTCs) as a marker for disease progression in metastatic cancer is controversial. The current review will serve to summarize the evidence on CTCs as a marker of disease progression in patients with metastatic breast cancer. The immunohistochemistry (IHC)-based CellSearch® is the only FDA-approved isolation technique for quantifying CTCs in patients with metastatic breast cancer. We searched PubMed and Web of Knowledge for clinical studies that assessed the prognostic and predictive value of CTCs using IHC-based isolation. The patient outcomes reported include median and Cox-proportional hazard ratios for overall survival (OS) and progression-free survival (PFS). All studies reported shorter OS for CTC-positive patients versus CTC-negative. A subset of the selected trials reported significant lower median PFS for CTC-positive patients. The reported trials support the utility of CTC enumeration for patient prognosis. But further studies are required to determine the utility of CTC enumeration for guiding patient therapy. There are three clinical trials ongoing to test this hypothesis. These studies, and others, will further establish the role of CTCs in clinical practice

    Stromal Characteristics and Impact on New Therapies for Metastatic Triple-Negative Breast Cancer

    No full text
    The heterogenous nature of triple-negative breast cancer (TNBC) is an underlying factor in therapy resistance, metastasis, and overall poor patient outcome. The lack of hormone and growth factor receptors lends to the use of chemotherapy as the first-line treatment for TNBC. However, the failure of chemotherapy demonstrates the need to develop novel immunotherapies, antibody–drug conjugates (ADCs), and other tumor- and stromal-targeted therapeutics for TNBC patients. The potential for stromal-targeted therapy is driven by studies indicating that the interactions between tumor cells and the stromal extracellular matrix (ECM) activate mechanisms of therapy resistance. Here, we will review recent outcomes from clinical trials targeting metastatic TNBC with immunotherapies aimed at programed death ligand–receptor interactions, and ADCs specifically linked to trophoblast cell surface antigen 2 (Trop-2). We will discuss how biophysical and biochemical cues from the ECM regulate the pathophysiology of tumor and stromal cells toward a pro-tumor immune environment, therapy resistance, and poor TNBC patient outcome. Moreover, we will highlight how ECM-mediated resistance is motivating the development of new stromal-targeted therapeutics with potential to improve therapy for this disease

    The dimer selectivity for cosmosiin and angolensin was demonstrated in dose-response BRET assays (A and B) and reporter assays (C and D) in HEK293 cells.

    No full text
    <p>ER dimer-specific BRET assays were performed over a range of compound concentrations of cosmosiin (A) and angolensin (B). HEK293T ERE-luciferase transcriptional assays reveal each compound's ability to transcriptionally activate various dimer pairs (C and D). ERα alone, ERβ alone, or ERα+ERβ was transfected along with an ERE-luciferase element in order to test the ability of cosmosiin (C) and angolensin (D) to transcriptionally activate these various ER dimer pairs. RLU, relative luciferase units. Error bars represent standard deviations from the mean of triplicate samples. In BRET (A), p values indicate all pairs with statistical significance by the Student's T-Test.</p

    Cosmosiin and angolensin inhibit PC3 cell motility and migration.

    No full text
    <p>(A) Wound healing assays showing the effect of 1 µM cosmosiin and 10 µM angolensin on ERα,β-positive PC3 cells. Vehicle (DMSO) treatment resulted in cell motility to fill the wound (<i>top panels</i>) that was inhibited by 1 µM cosmosiin (<i>middle panels</i>) and 10 µM angolensin (<i>bottom panels</i>). (B) Transwell migration assays measured the ability of cosmosiin (B) and angolensin (C) to inhibit cellular migration of PC3 cells toward a chemoattractant. Cosmosiin (B) and angolensin (C) decreased the ability of PC3 cells to migrate through the pore, and this decreased ability was ablated by the antagonist ICI 182,780 at 100 nM.</p

    Determination of relative expression levels of ERα and ERβ in various cell lines.

    No full text
    <p>Western blotting analyses of ERα and ERβ expression in HC11 (lane 1), PC3 (lane 2), PC3shERα (lane 3), PC3shERβ (lane 4), MDA-MB-231 (lane 5), and DU145 (lane 6).</p

    Flow scheme of high throughput screening and characterization of compounds with selectivity for ERα/ERβ heterodimers.

    No full text
    <p>A library of >5200 small molecules was screened ER transcriptional activity using T47D-KBLuc cells. Molecules with transcriptional activity were then screened for ERα/α, ERα/β, or ER β/β dimerization potential using BRET assays. Two phytoestrogens, angolensin and cosmosiin, were identified as ER dimer selective ligands. These molecules were validated using <i>in vitro</i> binding assays and BRET and ERE-luciferase reporter assays. Heterodimer selective concentrations were identified as 10 µM angolensin and 1 µM cosmosiin. The cellular effects of these two heterodimer-selective concentrations were characterized using cell migration and proliferation assays.</p

    Organotypic microfluidic breast cancer model reveals starvation-induced spatial-temporal metabolic adaptationsResearch in context

    No full text
    Background: Ductal carcinoma in situ (DCIS) is the earliest stage of breast cancer. During DCIS, tumor cells remain inside the mammary duct, growing under a microenvironment characterized by hypoxia, nutrient starvation, and waste product accumulation; this harsh microenvironment promotes genomic instability and eventually cell invasion. However, there is a lack of biomarkers to predict what patients will transition to a more invasive tumor or how DCIS cells manage to survive in this harsh microenvironment. Methods: In this work, we have developed a microfluidic model that recapitulates the DCIS microenvironment. In the microdevice, a DCIS model cell line was grown inside a luminal mammary duct model, embedded in a 3D hydrogel with mammary fibroblasts. Cell behavior was monitored by confocal microscopy and optical metabolic imaging. Additionally, metabolite profile was studied by NMR whereas gene expression was analyzed by RT-qPCR. Findings: DCIS cell metabolism led to hypoxia and nutrient starvation; revealing an altered metabolism focused on glycolysis and other hypoxia-associated pathways. In response to this starvation and hypoxia, DCIS cells modified the expression of multiple genes, and a gradient of different metabolic phenotypes was observed across the mammary duct model. These genetic changes observed in the model were in good agreement with patient genomic profiles; identifying multiple compounds targeting the affected pathways. In this context, the hypoxia-activated prodrug tirapazamine selectively destroyed hypoxic DCIS cells. Interpretation: The results showed the capacity of the microfluidic model to mimic the DCIS structure, identifying multiple cellular adaptations to endure the hypoxia and nutrient starvation generated within the mammary duct. These findings may suggest new potential therapeutic directions to treat DCIS. In summary, given the lack of in vitro models to study DCIS, this microfluidic device holds great potential to find new DCIS predictors and therapies and translate them to the clinic. Keywords: Breast cancer, DCIS, Microfluidics, Organotypic, 3D mode
    corecore