194 research outputs found

    Possible recent and ancient glacial ice flow in the south polar region of Mars

    Get PDF
    Martian polar science began almost as soon as small telescopes were trained on the planet. The seasonal expansion and contraction of the polar caps and their high albedoes led most astronomers to think that water ice is the dominant constituent. In 1911 Lowell perceived a bluish band around the retreating edge of the polar caps, and interpreted it as water from melting polar ice and seasonal snow. An alternative idea in his time was that the polar caps consist of frozen carbonic acid. Lowell rejected the carbonic acid hypothesis on account of his blue band. He also pointed out that carbonic acid would sublimate rather than melt at confining pressures near and below one bar, hence, carbonic acid could not account for the blue band. In comparing Lowell's theories with today's knowledge, it is recognized that (1) sublimation is mainly responsible for the growth and contraction of Mars' polar caps, (2) carbon dioxide is a major component of the southern polar cap, and (3) Lowell's blue band was probably seasonal dust and/or clouds. Geomorphic evidence that glacial ice and glacial melt waters once flowed over broad areas of the southern polar region. Two aspects of the south polar region suggest possible glacial processes during two distinct eras in Mars' history

    Igneous and tectonic evolution of Venusian and terrestrial coronae

    Get PDF
    A great variety of tectonic and volcanic features have been documented on Venus. It is widely appreciated that there are close spatial associations among certain types of tectonic structures and some classes of volcanic flows and constructs. Coronae are endowed with a particularly rich variety of volcanism. It is thought that coupled tectonic and volcanic aspects of coronae are cogenetic manifestations of mantle plumes. An outstanding feature of most venusian coronae is their circular or elliptical shape defined by peripheral zones of fracturing and/or folding. Some coronae are composite, consisting of two or more small coronae within a larger enclosing corona, suggesting complex histories of structured diapirism analogous in some ways to salt dome tectonics. Coronae range widely in size, from smaller than 100 km to over 1000 km in diameter. Volcanic features associated with venusian coronae include lunar-like sinuous rilles, thin lava flows, cinder cone-like constructs, shield volcanos, and pancake domes. Several types of volcanic features are often situated within or near a single corona, in many instances including land-forms indicating effusions of both low- and high-viscosity lavas. In some cases stratigraphic evidence brackets emplacement of pancake domes during the period of tectonic development of the corona, thus supporting a close link between the igneous and tectonic histories of coronae. These associations suggest emplacement of huge diapirs and massive magmatic intrusions, thus producing the tectonic deformations defining these structures. Igneous differentiation of the intrusion could yield a range of lava compositions. Head and Wilson suggested a mechanism that would cause development of neutral buoyancy zones in the shallow subsurface of Venus, thereby tending to promote development of massive igneous intrusions

    The Northern Plains MSATT Meeting, and a call for a field-oriented successor to MSATT

    Get PDF
    The workshop was devoted to a review of our knowledge of the Martian northern plains and presentation of recent ideas pertaining to the geologic and climatic evolution of this interesting region. The meeting was held in Fairbanks to allow easy access to Mars-like terrains in central and northern Alaska. There is no place on Earth that is a close analog of the Martian northern plains, but parts of Alaska come reasonably close in some respects, so we may expect that some of the processes occurring there are similar to processes that have occurred on Mars

    Geomorphic processes in the Argyre-Dorsa Argentea region of Mars

    Get PDF
    Among many indications of possible ancient Martian galciation are sinuous eskerlike ridges in southern Argyre Planitia and the Dorsa Argentea region. But, in photogeology, other interpretations are always possible, and what appears eskerlike to one set of eyes may appear quite different to another. Interpretations of these ridges are about as numerous as observers, who collectively have suggested nine distinct hypotheses. Martian sinuous ridges have been interpreted as wrinkle ridges, lava flows, igneous dikes, clastic dikes, linear sand dunes, spits or bars, examples of inverted stream topography, or glacial crevasse fill. With Mars Observer en route to Mars, the prospects for a narrowing of the debate are bright. The esker hypothesis will gain support if Mars Observer images show that the ridges contain boulders, that the ridges are layered and contain channel structures, that the ridges are modified by thermokarst, or that the ridges occur in close, logical associations with other glacial landforms such as flutes, oriented grooves, and moraines. In the meantime, the evidence presented below bolsters the esker hypothesis, challenges certain alternative ideas, and draws a tentative geomorphic connection between the sinuous ridges of Argyre and those of Dorsa Argentea

    Crustal structure and igneous processes in a chondritic Io

    Get PDF
    Liquid sulfur can form when metal-free C1 or C2 chondrites are heated. It may be obtained either by direct melting of native sulfur in disequilibrated C1 or C2 chondrites or by incongruent melting of pyrite and other sulfides in thermodynamically equilibrated rocks of the same composition. Hence, Lewis considered C2 chondrites to be the best meteoritic analog for Io's bulk composition. Metal-bearing C3 and ordinary chondrites are too chemically reduced to yield liquid sulfur and are not thought to represent plausible analogs of Io's bulk composition. An important aspect of Lewis' work is that CaSO4 and MgSO4 are predicted to be important in Io. Real C1 and C2 chondrites contain averages of, respectively, 11 percent and 3 percent by mass of salts (plus water of hydration). The most abundant chondritic salts are magnesium and calcium sulfates, but other important components include sulfates of sodium, potassium, and nickel and carbonates of magnesium, calcium, and iron. It is widely accepted that chondritic salts are formed by low-temperature aqueous alteration. Even if Io originally did not contain salts, it is likely that aqueous alteration would have yielded several percent sulfates and carbonates. In any event, Io probably contains sulfates and carbonates. This report presents the results of a model of differentiation of a simplified C2 chondrite-like composition that includes 1.92 percent MgSO4, 0.56 percent CaSO4, 0.53 percent CaCO3, and 0.094 percent elemental sulfur. The temperature of the model is gradually increased; ensuing fractional melting results in these components extruding or intruding at gravitationally stable levels in Io's crust. Relevant phase equilibria were reviewed. A deficiency of high-pressure phase equilibria renders the present model qualitative

    The magnesium sulfate-water system at pressures to 4 kilobars

    Get PDF
    Hydrated magnesium sulfate constitutes up to 1/6 of the mass of carbonaceous chondrites, and probably is important in many icy asteroids and satellites. It occurs naturally in meteorites mostly as epsomite. MgSO4, considered anhydrously, comprises nearly 3/4 of the highly soluble fraction of C1 chondrites. Thus, MgSO4 is probably an important solute in cryovolcanic brines erupted on certain icy objects in the outer solar system. While the physiochemical properties of the water-magnesium sulfate system are well known at low pressures, planetological applications of these data are hindered by a dearth of useful published data at elevated pressures. Accordingly, solid-liquid phase equilibria was recently explored in this chemical system at pressures extending to about 4 kilobars. The water magnesium sulfate system in the region of the eutectic exhibits qualitatively constant behavior between pressures of 1 atm and 2 kbar. The eutectic melting curve closely follows that for water ice, with a freezing point depression of about 4 K at 1 atm decreasing to around 3.3 K at 2 kbars. The eutectic shifts from 17 pct. MgSO4 at 1 atm to about 15.3 pct at 2 kbars. Above 2 kbars, the eutectic melting curve again tends to follow ice

    Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake

    Get PDF
    The Gorkha earthquake (M 7.8) on 25 April 2015 and later aftershocks struck South Asia, killing ~9,000 and damaging a large region. Supported by a large campaign of responsive satellite data acquisitions over the earthquake disaster zone, our team undertook a satellite image survey of the earthquakes’ induced geohazards in Nepal and China and an assessment of the geomorphic, tectonic, and lithologic controls on quake-induced landslides. Timely analysis and communication aided response and recovery and informed decision makers. We mapped 4,312 co-seismic and post-seismic landslides. We also surveyed 491 glacier lakes for earthquake damage, but found only 9 landslide-impacted lakes and no visible satellite evidence of outbursts. Landslide densities correlate with slope, peak ground acceleration, surface downdrop, and specific metamorphic lithologies and large plutonic intrusions

    Workshop on the Martian Northern Plains: Sedimentological, periglacial, and paleoclimatic evolution

    Get PDF
    The penultimate meeting in the Mars Surface and Atmosphere Through Time (MSATT) series of workshops was held on the campus of the University of Alaska in Fairbanks, Alaska, 12-13 Aug. 1993. This meeting, entitled 'The Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution,' hosted by the Geophysical Institute at the University of Alaska, was designed to help foster an exchange of ideas among researchers of the Mars science community and the terrestrial glacial and periglacial science community. The technical sessions of the workshop were complemented by field trips to the Alaska Range and to the Fairbanks area and a low-altitude chartered overflight to the Arctic Costal Plain, so that, including these trips, the meeting lasted from 9-14 Aug. 1993. The meeting, field trips, and overflight were organized and partially funded by the Lunar and Planetary Institute and the MSATT Study Group. The major share of logistical support was provided by the Publications and Program Services Department of the Lunar and Planetary Institute. The workshop site was selected to allow easy access to field exposures of active glaciers and glacial and periglacial landforms. In all, 25 scientists attended the workshop, 24 scientists (plus 4 guests and the meeting coordinator) participated in the field trips, and 18 took part in the overflight. This meeting reaffirmed the value of expertly led geologic field trips conducted in association with topical workshops

    Phase equilibria of the magnesium sulfate-water system to 4 kbars

    Get PDF
    Magnesium sulfate is the most abundant salt in carbonaceous chondrites, and it may be important in the low-temperature igneous evolution and aqueous differentiation of icy satellites and large chondritic asteroids. Accordingly, we are investigating high-pressure phase equilibria in MgSO4-H2O solutions under pressures up to four kbars. An initial report was presented two years ago. This abstract summarizes our results to date including studies of solutions containing 15.3 percent, 17 percent, and 22 percent MgSO4. Briefly, these results demonstrate that increasing pressure causes the eutectic and peritectic compositions to shift to much lower concentrations of magnesium sulfate, and the existence of a new low-density phase of magnesium sulfate hydrate

    Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake

    Get PDF
    The Gorkha earthquake (M 7.8) on 25 April 2015 and later aftershocks struck South Asia, killing ~9,000 and damaging a large region. Supported by a large campaign of responsive satellite data acquisitions over the earthquake disaster zone, our team undertook a satellite image survey of the earthquakes’ induced geohazards in Nepal and China and an assessment of the geomorphic, tectonic, and lithologic controls on quake-induced landslides. Timely analysis and communication aided response and recovery and informed decision makers. We mapped 4,312 co-seismic and post-seismic landslides. We also surveyed 491 glacier lakes for earthquake damage, but found only 9 landslide-impacted lakes and no visible satellite evidence of outbursts. Landslide densities correlate with slope, peak ground acceleration, surface downdrop, and specific metamorphic lithologies and large plutonic intrusions
    • …
    corecore