4 research outputs found

    Human cardiomyocyte calcium handling and transverse tubules in mid-stage of post-myocardial-infarction heart failure

    Get PDF
    Aims: Cellular processes in the heart rely mainly on studies from experimental animal models or explanted hearts from patients with terminal end-stage heart failure (HF). To address this limitation, we provide data on excitation contraction coupling, cardiomyocyte contraction and relaxation, and Ca2+ handling in post-myocardial-infarction (MI) patients at mid-stage of HF. Methods and results: Nine MI patients and eight control patients without MI (non-MI) were included. Biopsies were taken from the left ventricular myocardium and processed for further measurements with epifluorescence and confocal microscopy. Cardiomyocyte function was progressively impaired in MI cardiomyocytes compared with non-MI cardiomyocytes when increasing electrical stimulation towards frequencies that simulate heart rates during physical activity (2 Hz); at 3 Hz, we observed almost total breakdown of function in MI. Concurrently, we observed impaired Ca2+ handling with more spontaneous Ca2+ release events, increased diastolic Ca2+, lower Ca2+ amplitude, and prolonged time to diastolic Ca2+ removal in MI (P < 0.01). Significantly reduced transverse-tubule density (−35%, P < 0.01) and sarcoplasmic reticulum Ca2+ adenosine triphosphatase 2a (SERCA2a) function (−26%, P < 0.01) in MI cardiomyocytes may explain the findings. Reduced protein phosphorylation of phospholamban (PLB) serine-16 and threonine-17 in MI provides further mechanisms to the reduced function. Conclusions: Depressed cardiomyocyte contraction and relaxation were associated with impaired intracellular Ca2+ handling due to impaired SERCA2a activity caused by a combination of alteration in the PLB/SERCA2a ratio and chronic dephosphorylation of PLB as well as loss of transverse tubules, which disrupts normal intracellular Ca2+ homeostasis and handling. This is the first study that presents these mechanisms from viable and intact cardiomyocytes isolated from the left ventricle of human hearts at mid-stage of post-MI HF

    Clinical and echocardiographic assessment of the Medtronic Advantage aortic valve prosthesis: the Scandinavian multicentre, prospective study

    No full text
    OBJECTIVE: The aim of this report is the prospective, multicentre evaluation of clinical results and haemodynamic performance of the Medtronic Advantage aortic valve prosthesis. METHODS: From April 2001 to June 2003, 166 patients (male:female 125:41; mean (SD) age 61.8 (11.8) years) received an aortic advantage valve prosthesis. Complete cumulative follow‐up was 242.7 patient‐years (maximum 3.2; mean 1.6 years). Postoperatively, patients underwent early (within 30 days) and 1 year transthoracic echocardiography. RESULTS: 30 day mortality was 2.4% (n = 4). Kaplan–Meier estimates of freedom from complications and linearised rates were as follows: 96.9 (1.6)% survival; 94.7 (1.3)% (2.06 patients/year) thrombo‐embolism; 99.4 (0.6)% (0.4 patients/year) bleeding; 98.8 (0.9)% (0.8 patients/year) non‐structural valve dysfunction; 98.8 (0.9)% (0.8 patients/year) reoperation. Valvular mean pressure gradients ranged from 16 (3) mm Hg for size 19 to 7 (2) mm Hg for size 27 and the corresponding effective orifice areas ranged from 1.2 (0.25) to 3.2 (0.66) cm(2). In all, left ventricular mass significantly decreased (p<0.001) and fractional shortening increased (p<0.001) from postoperative to 1 year echocardiography. CONCLUSIONS: Haemodynamic performance and early clinical results of Medtronic advantage in the aortic position were satisfactory and comparable with those of other bileaflet valves in current clinical use
    corecore