21 research outputs found

    The pathogenesis of osteodystrophy after renal transplantation as detected by early alterations in bone remodeling

    Get PDF
    The pathogenesis of osteodystrophy after renal transplantation as detected by early alterations in bone remodeling.BackgroundLoss of bone mass after transplantation begins in the early periods after transplantations and may persist for several years, even in patients with normal renal function. While the pathogenesis of these abnormalities is still unclear, several studies suggest that preexisting bone disease, glucocorticoid therapy, and alterations in phosphate metabolism may play important roles. Recent studies indicate that osteoblast apoptosis and impaired osteoblastogenesis play important roles in the pathogenesis of glucocorticoid-induced osteoporosis.ObjectivesTo examine the early alterations in osteoblast number and surfaces during the period following renal transplantation.MethodsTwenty patients with a mean age of 36.5 ± 12 years were subjected to bone biopsy 22 to 160 days after renal transplantation. In 12 patients, a control biopsy was performed on the day of transplantation. Bone sections were evaluated by histomorphometric analysis and cell DNA fragmentation by the methods of terminal deoxynucleotidyl transferase-mediated uridine triphosphate nick end labeling (TUNEL), using immunoperoxidase and direct immunofluorescence techniques.ResultsThe main alterations in posttransplant biopsies were a decrease in osteoid and osteoblast surfaces, adjusted bone formation rate, and prolonged mineralization lag time. Peritrabecular fibrosis was markedly decreased. None of the pretransplant biopsies revealed osteoblast apoptosis. In contrast, TUNEL-positive cells in the proximity of osteoid seams or in the medullary space were observed in nine posttransplant biopsies of which four had mixed bone disease, two had adynamic bone disease, one had osteomalacia, one had osteitis fibrosa, and one had mild hyperparathyroid bone disease. Osteoblast number in posttransplant biopsies with apoptosis was lower as compared with posttransplant biopsies without apoptosis. In addition, most of them showed a marked shift toward quiescence from the cuboidal morphology of active osteoblasts. Serum phosphorus levels were lower in patients showing osteoblast apoptosis and correlated positively with osteoblast number and negatively with the number of apoptotic osteoblasts. In addition, posttransplant osteoblast surface correlated positively with parathyroid hormone (PTH) levels and negatively with glucocorticoid cumulative dose.ConclusionThe data suggest that impaired osteoblastogenesis and early osteoblast apoptosis may play important roles in the pathogenesis of posttransplant osteoporosis. The possible mechanisms involved in the pathogenesis of theses alterations include posttransplant hypophosphatemia, the use of glucocorticoids, and the preexisting bone disease. PTH seems to have a protective effect by preserving osteoblast survival

    Vascular Dysfunction Induced in Offspring by Maternal Dietary Fat Involves Altered Arterial Polyunsaturated Fatty Acid Biosynthesis

    Get PDF
    Nutrition during development affects risk of future cardiovascular disease. Relatively little is known about whether the amount and type of fat in the maternal diet affect vascular function in the offspring. To investigate this, pregnant and lactating rats were fed either 7%(w/w) or 21%(w/w) fat enriched in either18:2n-6, trans fatty acids, saturated fatty acids, or fish oil. Their offspring were fed 4%(w/w) soybean oil from weaning until day 77. Type and amount of maternal dietary fat altered acetylcholine (ACh)-mediated vaso-relaxation in offspring aortae and mesenteric arteries, contingent on sex. Amount, but not type, of maternal dietary fat altered phenylephrine (Pe)-induced vasoconstriction in these arteries. Maternal 21% fat diet decreased 20:4n-6 concentration in offspring aortae. We investigated the role of Δ6 and Δ5 desaturases, showing that their inhibition in aortae and mesenteric arteries reduced vasoconstriction, but not vaso-relaxation, and the synthesis of specific pro-constriction eicosanoids. Removal of the aortic endothelium did not alter the effect of inhibition of Δ6 and Δ5 desaturases on Pe-mediated vasoconstriction. Thus arterial smooth muscle 20:4n-6 biosynthesis de novo appears to be important for Pe-mediated vasoconstriction. Next we studied genes encoding these desaturases, finding that maternal 21% fat reduced Fads2 mRNA expression and increased Fads1 in offspring aortae, indicating dysregulation of 20:4n-6 biosynthesis. Methylation at CpG −394 bp 5′ to the Fads2 transcription start site predicted its expression. This locus was hypermethylated in offspring of dams fed 21% fat. Pe treatment of aortae for 10 minutes increased Fads2, but not Fads1, mRNA expression (76%; P<0.05). This suggests that Fads2 may be an immediate early gene in the response of aortae to Pe. Thus both amount and type of maternal dietary fat induce altered regulation of vascular tone in offspring though differential effects on vaso-relaxation, and persistent changes in vasoconstriction via epigenetic processes controlling arterial polyunsaturated fatty acid biosynthesis

    Inhibition of BMPs by follistatin is required for FGF3 expression and segmental patterning of the hindbrain

    Get PDF
    AbstractA network of molecular interactions is required in the developing vertebrate hindbrain for the formation and anterior–posterior patterning of the rhombomeres. FGF signaling is required in this network to upregulate the expression of the Krox20 and Kreisler segmentation genes, but little is known of how FGF gene expression is regulated in the hindbrain. We show that the dynamic expression of FGF3 in chick hindbrain segments and boundaries is similar to that of the BMP antagonist, follistatin. Consistent with a regulatory relationship between BMP signaling and FGF3 expression, we find that an increase in BMP activity due to blocking of follistatin translation by morpholino antisense oligonucleotides or overexpression of BMP results in strong inhibition of FGF3 expression. Conversely, addition of follistatin leads to an increase in the level of FGF3 expression. Furthermore, the segmental inhibition of BMP activity by follistatin is required for the expression of Krox20, Hoxb1 and EphA4 in the hindbrain. In addition, we show that the maintenance of FGF3 gene expression requires FGF activity, suggestive of an autoregulatory loop. These results reveal an antagonistic relationship between BMP activity and FGF3 expression that is required for correct segmental gene expression in the chick hindbrain, in which follistatin enables FGF3 expression by inhibiting BMP activity

    Expression of hindbrain boundary markers is regulated by FGF3

    Get PDF
    Summary Compartment boundaries act as organizing centers that segregate adjacent areas into domains of gene expression and regulation, and control their distinct fates via the secretion of signalling factors. During hindbrain development, a specialized cell-population forms boundaries between rhombomeres. These boundary cells demonstrate unique morphological properties and express multiple genes that differs them from intra-rhombomeric cells. Yet, little is known regarding the mechanisms that controls the expression or function of these boundary markers. Multiple components of the FGF signaling system, including ligands, receptors, downstream effectors as well as proteoglycans are shown to localize to boundary cells in the chick hindbrain. These patterns raise the possibility that FGF signaling plays a role in regulating boundary properties. We provide evidence to the role of FGF signaling, particularly the boundary-derived FGF3, in regulating the expression of multiple markers at hindbrain boundaries. These findings enable further characterization of the unique boundary-cell population, and expose a new function for FGFs as regulators of boundary-gene expression in the chick hindbrain

    Multimodal imaging reveals a role for akt1 in fetal cardiac development

    Get PDF
    \u3cp\u3eEven though congenital heart disease is the most prevalent malformation, little is known about how mutations affect cardiovascular function during development. Akt1 is a crucial intracellular signaling molecule, affecting cell survival, proliferation, and metabolism. The aim of this study was to determine the role of Akt1 on prenatal cardiac development. In utero echocardiography was performed in fetal wild-type, heterozygous, and Akt1-deficient mice. The same fetal hearts were imaged using ex vivo micro-computed tomography (lCT) and histology. Neonatal hearts were imaged by in vivo magnetic resonance imaging. Additional ex vivo neonatal hearts were analyzed using histology and real-time PCR of all three groups. In utero echocardiography revealed abnormal blood flow patterns at the mitral valve and reduced contractile function of Akt1 null fetuses, while ex vivo μCT and histology unraveled structural alterations such as dilated cardiomyopathy and ventricular septum defects in these fetuses. Further histological analysis showed reduced myocardial capillaries and coronary vessels in Akt1 null fetuses. At neonatal age, Akt1-deficient mice exhibited reduced survival with reduced endothelial cell density in the myocardium and attenuated cardiac expression of vascular endothelial growth factor A and collagen Iα1. To conclude, this study revealed a central role of Akt1 in fetal cardiac function and myocardial angiogenesis inducing fetal cardiomyopathy and reduced neonatal survival. This study links a specific physiological phenotype with a defined genotype, namely Akt1 deficiency, in an attempt to pinpoint intrinsic causes of fetal cardiomyopathies.\u3c/p\u3

    Multimodal imaging reveals a role for akt1 in fetal cardiac development

    No full text
    Even though congenital heart disease is the most prevalent malformation, little is known about how mutations affect cardiovascular function during development. Akt1 is a crucial intracellular signaling molecule, affecting cell survival, proliferation, and metabolism. The aim of this study was to determine the role of Akt1 on prenatal cardiac development. In utero echocardiography was performed in fetal wild-type, heterozygous, and Akt1-deficient mice. The same fetal hearts were imaged using ex vivo micro-computed tomography (lCT) and histology. Neonatal hearts were imaged by in vivo magnetic resonance imaging. Additional ex vivo neonatal hearts were analyzed using histology and real-time PCR of all three groups. In utero echocardiography revealed abnormal blood flow patterns at the mitral valve and reduced contractile function of Akt1 null fetuses, while ex vivo μCT and histology unraveled structural alterations such as dilated cardiomyopathy and ventricular septum defects in these fetuses. Further histological analysis showed reduced myocardial capillaries and coronary vessels in Akt1 null fetuses. At neonatal age, Akt1-deficient mice exhibited reduced survival with reduced endothelial cell density in the myocardium and attenuated cardiac expression of vascular endothelial growth factor A and collagen Iα1. To conclude, this study revealed a central role of Akt1 in fetal cardiac function and myocardial angiogenesis inducing fetal cardiomyopathy and reduced neonatal survival. This study links a specific physiological phenotype with a defined genotype, namely Akt1 deficiency, in an attempt to pinpoint intrinsic causes of fetal cardiomyopathies
    corecore