25 research outputs found

    Development and characterization of nano-micro structures as carrier for bioactive compounds

    Get PDF

    Solution-blown nanofiber mats from fish sarcoplasmic protein

    Get PDF
    In the present work, solution-blowing was adopted to form nanofibers from fish sarcoplasmic proteins (FSPs). Nanofiber mats containing different weight ratios (up to 90/10) of FSP in the FSP/nylon 6 blended nanofibers were formed from formic acid solutions, and compared to electrospun fibers made from the same solutions. The nanofiber mats produced by the two methods were characterized in terms of FSP content, fiber diameter distribution, fiber mat porosity, and mass of the fibers collected. The mechanical strength of the solution-blown fibers was also measured. Overall, fibers made by the two techniques were similar, but with some exceptions. The fiber diameter of the electrospun fibers was slightly smaller than those made using solution-blowing, however in both cases the fiber diameter increased with increasing FSP content. Interestingly, for uniform fibers the stretchability of the fibers increased with increasing FSP content, indicated by an increased strain at rupture. Moreover, the mechanical tests showed that up to 50% of nylon 6 could be replaced with FSP without compromising the mechanical properties, compared to pure nylon 6 nanofibers. Comparison of the yield showed that the production rate of solution-blowing was increased 30-fold in relation to electrospinning. Overall, this study reveals FSP as an interesting biopolymeric alternative to synthetic polymers, and the introduction of FSP to nylon 6 provides a composite with controlled properties

    Reduction of acute respiratory infections in day-care by non-pharmaceutical interventions: a narrative review

    Get PDF
    ObjectiveChildren who start in day-care have 2–4 times as many respiratory infections compared to children who are cared for at home, and day-care staff are among the employees with the highest absenteeism. The extensive new knowledge that has been generated in the COVID-19 era should be used in the prevention measures we prioritize. The purpose of this narrative review is to answer the questions: Which respiratory viruses are the most significant in day-care centers and similar indoor environments? What do we know about the transmission route of these viruses? What evidence is there for the effectiveness of different non-pharmaceutical prevention measures?DesignLiterature searches with different terms related to respiratory infections in humans, mitigation strategies, viral transmission mechanisms, and with special focus on day-care, kindergarten or child nurseries, were conducted in PubMed database and Web of Science. Searches with each of the main viruses in combination with transmission, infectivity, and infectious spread were conducted separately supplemented through the references of articles that were retrieved.ResultsFive viruses were found to be responsible for ≈95% of respiratory infections: rhinovirus, (RV), influenza virus (IV), respiratory syncytial virus (RSV), coronavirus (CoV), and adenovirus (AdV). Novel research, emerged during the COVID-19 pandemic, suggests that most respiratory viruses are primarily transmitted in an airborne manner carried by aerosols (microdroplets).ConclusionSince airborne transmission is dominant for the most common respiratory viruses, the most important preventive measures consist of better indoor air quality that reduces viral concentrations and viability by appropriate ventilation strategies. Furthermore, control of the relative humidity and temperature, which ensures optimal respiratory functionality and, together with low resident density (or mask use) and increased time outdoors, can reduce the occurrence of respiratory infections
    corecore