151 research outputs found

    Superparamagnetic iron oxide polyacrylic acid coated {\gamma}-Fe2O3 nanoparticles does not affect kidney function but causes acute effect on the cardiovascular function in healthy mice

    Full text link
    This study describes the distribution of intravenously injected polyacrylic acid (PAA) coated {\gamma}-Fe2O3 NPs (10 mg kg-1) at the organ, cellular and subcellular levels in healthy BALB/cJ mice and in parallel addresses the effects of NP injection on kidney function, blood pressure and vascular contractility. Magnetic resonance imaging (MRI) and transmission electron microscopy (TEM) showed accumulation of NPs in the liver within 1h after intravenous infusion, accommodated by intracellular uptake in endothelial and Kupffer cells with subsequent intracellular uptake in renal cells, particularly the cytoplasm of the proximal tubule, in podocytes and mesangial cells. The renofunctional effects of NPs were evaluated by arterial acid-base status and measurements of glomerular filtration rate (GFR) after instrumentation with chronically indwelling catheters. Arterial pH was 7.46 and 7.41 in mice 0.5 h after injections of saline or NP, and did not change over the next 12h. In addition, the injections of NP did not affect arterial PCO2 or [HCO3-] either. Twenty-four and 96h after NP injections, the GFR averaged 11.0 and 13.0 ml min-1 g-1, respectively, values which were statistically comparable with controls (14.0 and 14.0 ml min-1 g-1). Mean arterial blood pressure (MAP) decreased 12-24h after NP injections (111 vs 123 min-1) associated with a decreased contractility of small mesenteric arteries revealed by myography to characterise endothelial function. In conclusion, our study demonstrates that accumulation of superparamagnetic iron oxide nanoparticles does not affect kidney function in healthy mice but temporarily decreases blood pressure.Comment: 21 pages, 12 figures, published in Toxicology and Applied Pharmacology 201

    Plasma ammonia levels predict hospitalisation with liver-related complications and mortality in clinically stable outpatients with cirrhosis

    Get PDF
    BACKGROUND AND AIMS: Hyperammonaemia is central in the pathogenesis of hepatic encephalopathy, but also has pleiotropic deleterious effects on several organ systems, impacting on immune function, sarcopenia, energy metabolism and portal hypertension. This study was performed to test the hypothesis that severity of hyperammonaemia is a risk factor for liver-related complications in clinically stable outpatients with cirrhosis. METHODS: We collected data from 754 clinically stable outpatients with cirrhosis from 3 independent liver units. Baseline ammonia levels were corrected to the upper limit of normal (AMM-ULN) for the reference laboratory. The primary endpoint was hospitalisation with liver-related complications (a composite endpoint of bacterial infection, variceal bleeding, overt hepatic encephalopathy, or new onset or worsening of ascites). Multivariable competing risk frailty analysis and fast unified random forest were performed to predict complications and mortality. External validation was carried out using prospective data from 130 cirrhotic patients in an independent tertiary liver centre. RESULTS: Overall, 260 (35%) patients were hospitalised with liver-related complications. On multivariable analysis, AMM-ULN was an independent predictor of both liver-related complications (HR=2.13; 95%CI=1.89-2.40; p<0.001) and mortality (HR=1.45; 95%CI=1.20-1.76; p<0.001). AUROC of AMM-ULN was 77.9% for 1-year complications, higher than traditional severity scores. Statistical differences in survival were found between high and low levels of AMM-ULN both for complications and mortality (p<0.001) using 1.4 as the optimal cut-off from the training set. AMM-ULN remained a key variable for the prediction of complications within the random forests model in the derivation cohort and upon external validation. CONCLUSION: Ammonia is an independent predictor of hospitalisation with liver-related complications and mortality in clinically stable outpatients with cirrhosis and performs better than traditional prognostic scores in predicting complications. LAY SUMMARY: We conducted a prospective cohort study evaluating the association of blood ammonia levels with the risk of adverse outcomes in 754 patients with stable cirrhosis across 3 independent liver units. We found that ammonia is a key determinant that helps to predict which patients will be hospitalised, develop liver-related complications and die; this was confirmed in an independent cohort of patients

    Asymmetric growth-limiting development of the female conceptus

    Get PDF
    IntroductionSex differences in prenatal growth may contribute to sex-dependent programming effects on postnatal phenotype. MethodsWe integrated for the first time phenotypic, histomorphological, clinico-chemical, endocrine and gene expression analyses in a single species, the bovine conceptus at mid-gestation. ResultsWe demonstrate that by mid-gestation, before the onset of accelerated growth, the female conceptus displays asymmetric lower growth compared to males. Female fetuses were smaller with lower ponderal index and organ weights than males. However, their brain:body weight, brain:liver weight and heart:body weight ratios were higher than in males, indicating brain and heart ‘sparing’. The female placenta weighed less and had lower volumes of trophoblast and fetal connective tissue than the male placenta. Female umbilical cord vessel diameters were smaller, and female-specific relationships of body weight and brain:liver weight ratios with cord vessel diameters indicated that the umbilico-placental vascular system creates a growth-limiting environment where blood flow is redistributed to protect brain and heart growth. Clinico-chemical indicators of liver perfusion support this female-specific growth-limiting phenotype, while lower insulin-like growth factor 2 (IGF2) gene expression in brain and heart, and lower circulating IGF2, implicate female-specific modulation of key endocrine mediators by nutrient supply. ConclusionThis mode of female development may increase resilience to environmental perturbations in utero and contribute to sex-bias in programming outcomes including susceptibility to non-communicable diseases

    The microbiome activates CD4 T-cell-mediated immunity to compensate for increased intestinal permeability

    Get PDF
    Background & Aims: Despite a prominent association, chronic intestinal barrier loss is insufficient to induce disease in human subjects or experimental animals. We hypothesized that compensatory mucosal immune activation might protect individuals with increased intestinal permeability from disease. We used a model in which intestinal barrier loss is triggered by intestinal epithelial-specific expression of constitutively active myosin light chain kinase (CA-MLCK). Here we asked whether constitutive tight junction barrier loss impacts susceptibility to enteric pathogens. Methods: Acute or chronic Toxoplasma gondii or Salmonella typhimurium infection was assessed in CA-MLCK transgenic or wild-type mice. Germ-free mice or those lacking specific immune cell populations were used to investigate the effect of microbial-activated immunity on pathogen translocation in the context of increased intestinal permeability. Results: Acute T gondii and S typhimurium translocation across the epithelial barrier was reduced in CA-MLCK mice. This protection was due to enhanced mucosal immune activation that required CD4^+ T cells and interleukin 17A but not immunoglobulin A. The protective mucosal immune activation in CA-MLCK mice depended on segmented filamentous bacteria (SFB), because protection against early S typhimurium invasion was lost in germ-free CA-MLCK mice but could be restored by conventionalization with SFB-containing, not SFB-deficient, microbiota. In contrast, chronic S typhimurium infection was more severe in CA-MLCK mice, suggesting that despite activation of protective mucosal immunity, barrier defects ultimately result in enhanced disease progression. Conclusions: Increased epithelial tight junction permeability synergizes with commensal bacteria to promote intestinal CD4^+ T-cell expansion and interleukin 17A production that limits enteric pathogen invasion

    Effectiveness of accelerated perioperative care and rehabilitation intervention compared to current intervention after hip and knee arthroplasty. A before-after trial of 247 patients with a 3-month follow-up

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Denmark, approximately 12,000 hip and knee arthroplasties were performed in 2006, and the hospital costs were close to US$ 110,000,000. In a randomized clinical trial, we have recently demonstrated the efficacy of accelerated perioperative care and rehabilitation intervention after hip and knee arthroplasty compared to current intervention under ideal circumstances. We do not, however, know whether these results could be reached under usual circumstances of healthcare practice. We therefore investigated whether length of stay after implementation of accelerated perioperative care and rehabilitation after hip and knee arthroplasty could be reduced in a normal healthcare setting, and how the achieved results matched those observed during the randomized clinical trial.</p> <p>Methods</p> <p>An effectiveness study as a before-after trial was undertaken in which all elective primary total hip and total knee arthroplasty patients were divided into a before-implementation group receiving the current perioperative procedure, and an after-implementation group receiving the new accelerated perioperative care and rehabilitation procedures as provided by a new multi-disciplinary organization. We used the Breakthrough Series Collaborative Model for implementation. The primary outcome measure was in hospital length of stay (LOS), and the secondary outcome measure was adverse effects within 3 months postoperatively.</p> <p>Results</p> <p>We included a total of 247 patients. Mean LOS was significantly (<it>P </it>< 0.001) reduced by 4.4 (95% CI 3.8–5.0) days after implementation of the accelerated intervention, from 8.8 (SD 3.0) days before implementation to 4.3 (SD 1.8) days after implementation. No significant differences in adverse effects were observed. LOS in this effectiveness study was significantly lower than LOS reported in the efficacy study.</p> <p>Conclusion</p> <p>Accelerated perioperative care and rehabilitation intervention after hip and knee arthroplasty was successfully and effectively implemented. Results obtained during usual hospital circumstances matched the results achieved under ideal circumstances in this group of patients.</p

    The pharmacological effect of BGC20-1531, a novel prostanoid EP4 receptor antagonist, in the Prostaglandin E2 human model of headache

    Get PDF
    Using a human Prostaglandin E2 (PGE2) model of headache, we examined whether a novel potent and selective EP4 receptor antagonist, BGC20-1531, may prevent headache and dilatation of the middle cerebral (MCA) and superficial temporal artery (STA). In a three-way cross-over trial, eight healthy volunteers were randomly allocated to receive 200 and 400 mg BGC20-1531 and placebo, followed by a 25-min infusion of PGE2. We recorded headache intensity on a verbal rating scale, MCA blood flow velocity and STA diameter. There was no difference in headache response or prevention of the dilation of the MCA or the STA (P > 0.05) with either dose of BGC20-1531 relative to placebo, although putative therapeutic exposures were not reached in all volunteers. In conclusion, these data suggest that the other EP receptors may be involved in PGE2 induced headache and dilatation in normal subjects
    corecore