42 research outputs found

    The impacts of recycled water on Great Western vineyard soils

    Full text link
    Recycled water has facilitated expansion of viticulture in Great Western, Victoria. The recycled water is of medium salinity, and has high concentrations of nutrients and sodium. Irrigation has resulted in increased topsoil EC, pH, and ESP. Laboratory studies identified spatially heterogeneous soils which present a risk of groundwater and offsite contamination

    Hormones in treated sewage effluent : final report

    Full text link

    Recycled effluent irrigation in vineyards : an Australian case study. II. management for sustainability

    Full text link
    The grape industry is reliant on water, and the future of the Australian viticulture industry could be affected by the rising salinity of irrigation water. Areas irrigated with recycled waters are especially at risk. Management can often ameliorate the adverse affects of low quality water, however this may require land-use practices that reduce commercial return from farming activities. With land application of wastewater in agriculture becoming an increasingly popular practice, the scientific challenge for viticulture will be to identify appropriate management strategies for sustainability of soil resources, so that maximum returns are achieved without the operation being compromised

    Recycled effluent irrigation in vineyards : an Australian case study. I. issues and monitoring

    Full text link
    The viticultural industry is becoming an increasingly significant part of the Australian agricultural sector, with gross earnings of over $4 billion in 2002. Expansion of the industry in the last decade has been rapid, however its heavy reliance on irrigation has resulted in further expansion in many wine growing regions being limited by the availability of water. This problem is not confined to the viticultural industry, with ever increasing pressures on water resources worldwide. As demands for water continue to rise, new strategies to meet demands must be adopted. One of the strategies being increasingly employed is the recycling of waste waters for a number of applications such as irrigation and industrial uses. The use of recycled water for vineyard irrigation provides a number of benefits. Among them are the reduced demands on potable supplies, reduced waste discharges to surface waters, and the opportunity for expansion of production. Recycled waters however, contain constituents which have the potential to cause deleterious effects to both production and the environment. Therefore, the use of recycled water for irrigation requires targetted monitoring and management to ensure the long-term sustainability of both the vineyard and the surrounding environment. Traditional monitoring techniques including water quality monitoring and soil testing can be complimented by new technologies and techniques which provide large quantities of information with relatively less labour and time. Such techniques can be used to monitor the vineyard environment to identify impacts arising from management practices, allowing vineyard managers to adjust management for sustainable production<br /

    Balancing environmental impacts and benefits of wastewater reuse

    Full text link
    Wastewater reuse is being widely promulgated to help address the global freshwater resource crisis. It can assist in reducing extraction of freshwater from the environment, and reuse of wastewater lessens the need for environmental discharge, which is clearly beneficial to receiving waters. But the practice itself also has the potential to be detrimental to natural and human environments: soil structure can become degraded, aquifers may be polluted, and human health may be threatened. The challenge facing natural resource managers is to identify the potential benefits and risks, and to achieve an appropriate balance. This paper describes environmental benefits and threats concomitant with the reuse of wastewater. We frequently draw upon examples from China and Australia-two countries that face particularly daunting water resourcechallenges-but the principles can be.extended far beyond these geographical bounds and are applicable tomany parts of the world.<br /

    Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic Salmon

    Full text link
    Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (&lt;10% of the diet) of algae in fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed

    Δ-6 desaturase substrate competition : dietary linoleic acid (18∶2n-6) has only trivial effects on α-linolenic acid (18∶3n-3) bioconversion in the teleost rainbow trout

    Get PDF
    It is generally accepted that, in vertebrates, omega-3 (n-3) and omega-6 (n-6) poly-unsaturated fatty acids (PUFA) compete for ?-6 desaturase enzyme in order to be bioconverted into long-chain PUFA (LC-PUFA). However, recent studies into teleost fatty acid metabolism suggest that these metabolic processes may not conform entirely to what has been previously observed in mammals and other animal models. Recent work on rainbow trout has led us to question specifically if linoleic acid (LA, 18:2n-6) and ?-linolenic acid (ALA, 18:3n-3) (?-6 desaturase substrates) are in direct competition for access to ?-6 desaturase. Two experimental diets were formulated with fixed levels of ALA, while LA levels were varied (high and low) to examine if increased availability of LA would result in decreased bioconversion of ALA to its LC-PUFA products through substrate competition. No significant difference in ALA metabolism towards n-3 LC-PUFA was exhibited between diets while significant differences were observed in LA metabolism towards n-6 LC-PUFA. These results are evidence for minor if any competition between substrates for ?-6 desaturase, suggesting that, paradoxically, the activity of ?-6 desaturase on n-3 and n-6 substrates is independent. These results call for a paradigm shift in the way we approach teleost fatty acid metabolism. The findings are also important with regard to diet formulation in the aquaculture industry as they indicate that there should be no concern for possible substrate competition between 18:3n-3 and 18:2n-6, when aiming at increased n-3 LC-PUFA bioconversion in vivo

    Fish oil replacement in current aquaculture feed : is cholesterol a hidden treasure for fish nutrition?

    Get PDF
    Teleost fish, as with all vertebrates, are capable of synthesizing cholesterol and as such have no dietary requirement for it. Thus, limited research has addressed the potential effects of dietary cholesterol in fish, even if fish meal and fish oil are increasingly replaced by vegetable alternatives in modern aquafeeds, resulting in progressively reduced dietary cholesterol content. The objective of this study was to determine if dietary cholesterol fortification in a vegetable oil-based diet can manifest any effects on growth and feed utilization performance in the salmonid fish, the rainbow trout. In addition, given a series of studies in mammals have shown that dietary cholesterol can directly affect the fatty acid metabolism, the apparent in vivo fatty acid metabolism of fish fed the experimental diets was assessed. Triplicate groups of juvenile fish were fed one of two identical vegetable oil-based diets, with additional cholesterol fortification (high cholesterol, H-Chol) or without (low cholesterol, L-Chol), for 12 weeks. No effects were observed on growth and feed efficiency, however, in fish fed H-Col no biosynthesis of cholesterol, and a remarkably decreased apparent in vivo fatty acid b-oxidation were recorded, whilst in LChol fed fish, cholesterol was abundantly biosynthesised and an increased apparent in vivo fatty acid b-oxidation was observed. Only minor effects were observed on the activity of stearyl-CoA desaturase, but a significant increase was observed for both the transcription rate in liver and the apparent in vivo activity of the fatty acid D-6 desaturase and elongase, with increasing dietary cholesterol. This study showed that the possible effects of reduced dietary cholesterol in current aquafeeds can be significant and warrant future investigations

    Spatial and temporal distribution of the leaching of surface applied tracers from an irrigated monolith of a loamy vineyard soil

    No full text
    Fresh water scarcity is an increasing problem worldwide. Strategies to alleviate water scarcity include the use of low-quality water for irrigation. The risk of groundwater contamination by pollutants in this water is affected by soil heterogeneity and preferential flow. These risk factors can be assessed by measuring the spatio-temporal redistribution of uniformly applied water and solutes. We placed a soil monolith (height 29 cm) from an Australian vineyard on a 100-cell multi-compartment sampler (MCS). At this vineyard, treated wastewater is used in response to the severe shortage of water in the summer. We studied the leaching risk associated with heterogeneous or preferential flow by irrigating the soil column with 24 applications to simulate one year. We applied simulated rainfall as well as wastewater (which contained chloride) during summer while relying on rainfall only in winter. We compared the chloride leaching with the leaching of bromide, which was applied during one of the applications as a pulse. During the entire simulated year, leaching of solutes from the monolith was measured. The results indicate that the assumption of uniform flow would underestimate the risk for the fresh groundwater reserves: 25 % of the solutes are transported though 6 % of the soil's cross-section. The spatial distribution of drainage and solute leaching varied little during the experiment. Consequently, the mass flux density pattern of the bromide pulse was comparable to that of the repeatedly applied chloride. However, the MCS data suggested lateral 'escape' from chloride to non-mobile areas, which means in the long run, considerable quantities of these solutes can build up in areas that do not receive irrigation water. © 2014 Springer-Verlag Berlin Heidelberg
    corecore