12 research outputs found

    Concurrent Sessions B: Fish Physiology and Fishway Passage Success - Comparative Physiology and Relative Swimming Performance of Three Redhorse (Moxostoma Spp.) Species: Associations with Fishways

    Get PDF
    Fishways have been constructed to maintain longitudinal connectivity for fish in fluvial systems impacted by barriers but there are relatively few studies of their biological effectiveness. Trend analysis of the CanFishPass fishway database showed that only 9% of Canadian fishways have been studied using methods that enable proper evaluation of biological effectiveness. A biological evaluation of the Vianney-Legendre fishway in Quebec for the passage of three redhorse species (Moxostoma anisurum, M. carinatum, M. macrolepidotum; silver, river and shorthead redhorse respectively) showed attraction efficiencies of 51%, 12%, 50%, respectively, and passage efficiencies of 88%, 50% and 69% respectively. For all species, failures in the fishway were likely to occur beforethe second turning basin in the fishway (84% of failures). Shorthead redhorse had higher maximum metabolic rates and were faster swimmers than silver and river redhorse. River redhorse recovered their lactate and glucose concentrations more quickly than silver and shorthead redhorse, and river redhorse were second in terms of metabolic recovery and swim speed. Fish sampled from the top of the fishway had nearly identical lactate, glucose and pH values compared to control fish. Additional research is required to understand how organismal performance, environmental conditions, and other factors interact with fishway designs to dictate which fish are successful and to inform research of future fishways. Our research suggests that there may be an opportunity for a rapid assessment approach where manual chasing and sampling of fish from the top of the fishway are used to determine which species (or sizes of fish) are exceeding their physiological capacity during passage

    What are the impacts of flow regime changes on fish productivity in temperate regions? A systematic map protocol

    Get PDF
    Background: Ecosystem changes from altered flows can have multiple impacts on fish, including changes to physical habitat, habitat access, food supplies, behaviour, community composition, energy expenditure, and population dynamics. There is growing evidence of the potential negative consequences of altered flow regimes on fluvial ecosystems and the fisheries they support. As such, the scientific and policy communities have acknowledged the need for maintaining or restoring natural flow variability in order to sustain ecological health of fluvial ecosystems. However, for resource managers, making decisions on the potential effects of flow alterations on fish productivity has been problematic because there are still uncertainties regarding flow-fish productivity relationships. Therefore, to ensure the maintenance of healthy and productive aquatic ecosystems and the sustainability of riverine fisheries, a better understanding of the impacts of flow alteration on fish productivity is needed. Due to the wide scope of this review, and the diversity of fish productivity outcomes used to evaluate flow alteration impacts, the set of studies will be quite heterogeneous. Therefore, prior to undertaking a comprehensive and quantitative synthesis, we propose to begin with a systematic map to provide an overview of the available evidence on the impacts of flow regime changes on fish productivity. We will also use this systematic map to identify subtopics that are sufficiently covered by existing studies to allow full systematic reviewing. Methods: This systematic map will compile evidence on the impacts of flow regime changes on fish productivity. All studies that evaluate the effects of flow regime change on direct outcomes of fish productivity, will be included in the review. We will use a broad definition of fish productivity to include any measurement related to: biomass, abundance, density, yield, diversity, growth, survival, individual performance, migration, reproduction, recruitment, or surrogate thereof. Relevant causes of a change in/modification to flow regime can include: (1) anthropogenic causes: dams, reservoirs (impoundments), hydroelectric facilities, locks, levees, water withdrawal (abstraction), water diversion, land-use changes, and road culverts; or (2) natural causes: climate change (possible indirect anthropogenic cause as well), floods, droughts, seasonal changes. Any freshwater or estuarine fish species or species groups in temperate regions will be considered. The review will include a wide range of sources including primary and grey literature and use public databases, search engines and specialist websites. A searchable database containing extracted meta-data from relevant included studies will be developed and provided as a supplementary file to the map report. The final narrative will describe the quantity and key characteristics of the available evidence, identify knowledge gaps for future research and identify subtopics that are sufficiently covered by existing studies to allow full systematic reviewing

    What are the consequences of fish entrainment and impingement associated with hydroelectric dams on fish productivity? A systematic review protocol

    Get PDF
    Abstract Background This systematic review will address the need for a better understanding of the impacts of fish entrainment and impingement associated with hydroelectric dams on fish productivity in freshwater temperate environments. As the number of dams continues to increase worldwide, so too has concerns for their effects on fish populations. Fish injury and mortality at hydroelectric facilities may have serious consequences for fish populations, which are generally the result of three main sources: (1) fish passage through hydroelectric facilities (i.e., turbines, spillways, sluiceways, and other passage routes) during downstream migration for migratory fish; (2) the entrainment of resident fish; and (3) the impingement of fish (migratory or resident) against screens/trash racks. Most studies on the impacts of entrainment and impingement at hydroelectric facilities on fish have primarily focused on: (1) how fish injury and mortality occurs; and (2) evaluations of the effectiveness of various management strategies used to mitigate harm during downstream passage. Given the contributions of migratory and resident adults and juveniles to fish production, a necessary extension is to evaluate the impacts of fish injury and mortality from hydropower dam entrainment and impingement on fish productivity. Therefore, to ensure the sustainability of fishes dependent on our freshwater ecosystems, a better understanding of the impacts of fish entrainment and impingement associated with hydroelectric dams on fish productivity is needed. Methods This systematic review will search for, compile, summarize and synthesize evidence on the impacts of fish entrainment and impingement associated with hydroelectric dams on fish productivity in freshwater temperate environments. Considered studies will include (but not be limited to): (1) those that report a metric related to mortality and injury as an indication of the effect on fish productivity; (2) the change in a metric related to mortality and injury relative to an appropriate control; and (3) articles that scale-up the evaluation to include some estimate of a change in a component of fish productivity (e.g., articles that include an estimate of fish loss from the population due to entrainment/impingement by comparing a metric related to mortality or injury to an estimate of population size or biomass). Only studies where the causal relationship between intervention and outcome is made clear to allow for the effects of entrainment and impingement to be isolated from other potential impacts of hydroelectric power production (e.g., barriers to migration and/or habitat degradation), will be included. The review will use public search engines and specialist websites, and will include both primary and grey literature. Potential effect modifiers will be identified to obtain a better understanding of the factors that are associated with variation in effects among studies, given differences in: (1) site-specific factors (e.g., turbine type, size, power output); (2) methodologies and study designs used to assess impacts; and (3) biological factors (e.g., fish life history stage, body size and morphology). Study quality will be assessed to allow for critical evaluation, including study design, confounding factors and statistical analysis. Data will be compiled into a narrative synthesis and a meta-analysis will be conducted where data availability and quality allow

    How do natural changes in flow magnitude affect fish abundance and diversity in temperate regions? A systematic review protocol

    No full text
    Abstract Natural flow regimes play important roles in maintaining the ecological integrity and diversity of aquatic ecosystems. Wildlife has adapted over time to the natural dynamics of their environment, including changes in flow regimes. Changes in flow, including changes in magnitude, frequency, duration, timing and rate of change, may affect the physical characteristics of aquatic habitats, access to habitats, food availability, population dynamics and community composition. Given the importance of natural flow regimes for fish, it is necessary to understand the extent to which natural flow regimes alter fish abundance and diversity. Here we present a protocol for a systematic review that will estimate how fish abundance and diversity are affected by natural variation (resulting from climatic variability and broad‐scale drivers such as climate‐induced change) in flow. This systematic review will use evidence published before 2016 that was identified in a recent systematic mapping exercise on the broader topic of flow regime change impacts (both natural and anthropogenic) on direct outcomes of freshwater or estuarine fish productivity. An updated English language search will be performed using six bibliographic databases, Google Scholar and networking tools to include commercially published and grey literature that has been published after 2016. Eligibility screening will be conducted at two stages: title and abstract, and full‐text. We will include all studies that evaluate the effect of natural changes in flow magnitude on fish abundance (broadly defined to also capture density and biomass metrics) and species diversity (broadly defined to also capture species richness and composition metrics). Any freshwater or estuarine fish species in temperate regions will be considered. Included eligible studies will be assessed for study validity. We will extract information on study characteristics, intervention/comparator details, measured outcomes and effect modifiers. A narrative synthesis will describe the quantity and characteristics of the available evidence, and where sufficient numbers of similar studies are available, a meta‐analysis will be conducted to estimate an overall mean and variance of effect

    Preferences of age-0 white sturgeon for different colours and strobe rates of LED lights may inform behavioural guidance strategies

    No full text
    Many populations of migratory fish species, including white sturgeon (Acipenser transmontanus Richardson), are threatened due to modification of riverine systems and may experience downstream displacement or mortality at water intake structures. Efforts to reduce the impacts of these structures are beginning to incorporate behavioural guidance, where the sensory capabilities of fishes are exploited to repel them from high-risk areas or attract them towards desirable pat

    What are the relative risks of mortality and injury for fish during downstream passage at hydroelectric dams in temperate regions? A systematic review

    No full text
    Abstract Background Fish injury and mortality resulting from entrainment and/or impingement during downstream passage over/through hydropower infrastructure has the potential to cause negative effects on fish populations. The primary goal of this systematic review was to address two research questions: (1) What are the consequences of hydroelectric dam fish entrainment and impingement on freshwater fish productivity in temperate regions?; (2) To what extent do various factors like site type, intervention type, and life history characteristics influence the consequences of fish entrainment and impingement? Methods The review was conducted using guidelines provided by the Collaboration for Environmental Evidence and examined commercially published and grey literature. All articles found using a systematic search were screened using a priori eligibility criteria at two stages (title and abstract, and full-text, respectively), with consistency checks being performed at each stage. The validity of studies was appraised and data were extracted using tools explicitly designed for this review. A narrative synthesis encompassed all relevant studies and a quantitative synthesis (meta-analysis) was conducted where appropriate. Review findings A total of 264 studies from 87 articles were included for critical appraisal and narrative synthesis. Studies were primarily conducted in the United States (93%) on genera in the Salmonidae family (86%). The evidence base did not allow for an evaluation of the consequences of entrainment/impingement on fish productivity per se; therefore, we evaluated the risk of freshwater fish injury and mortality owing to downstream passage through common hydropower infrastructure. Our quantitative synthesis suggested an overall increased risk of injury and immediate mortality from passage through/over hydropower infrastructure. Injury and immediate mortality risk varied among infrastructure types. Bypasses resulted in decreased injury risk relative to controls, whereas turbines and spillways were associated with the highest injury risks relative to controls. Within turbine studies, those conducted in a lab setting were associated with higher injury risk than field-based studies, and studies with longer assessment time periods (≥ 24–48 h) were associated with higher risk than shorter duration assessment periods (< 24 h). Turbines and sluiceways were associated with the highest immediate mortality risk relative to controls. Within turbine studies, lab-based studies had higher mortality risk ratios than field-based studies. Within field studies, Francis turbines resulted in a higher immediate mortality risk than Kaplan turbines relative to controls, and wild sourced fish had a higher immediate mortality risk than hatchery sourced fish in Kaplan turbines. No other associations between effect size and moderators were identified. Taxonomic analyses revealed a significant increased injury and immediate mortality risk relative to controls for genera Alosa (river herring) and Oncorhynchus (Pacific salmonids), and delayed mortality risk for Anguilla (freshwater eels). Conclusions Our synthesis suggests that hydropower infrastructure in temperate regions increased the overall risk of freshwater fish injury and immediate mortality relative to controls. The evidence base confirmed that turbines and spillways increase the risk of injury and/or mortality for downstream passing fish compared to controls. Differences in lab- and field-based studies were evident, highlighting the need for further studies to understand the sources of variation among lab- and field-based studies. We were unable to examine delayed mortality, likely due to the lack of consistency in monitoring for post-passage delayed injury and mortality. Our synthesis suggests that bypasses are the most “fish friendly” passage option in terms of reducing fish injury and mortality. To address knowledge gaps, studies are needed that focus on systems outside of North America, on non-salmonid or non-sportfish target species, and on population-level consequences of fish entrainment/impingement

    Evidence-based restoration in the Anthropocene-from acting with purpose to acting for impact

    No full text
    The recognition that we are in the distinct new epoch of the Anthropocene suggests the necessity for ecological restoration to play a substantial role in repairing the Earth's damaged ecosystems. Moreover, the precious yet limited resources devoted to restoration need to be used wisely. To do so, we call for the ecological restoration community to embrace the concept of evidence-based restoration. Evidence-based restoration involves the use of rigorous, repeatable, and transparent methods (i.e. systematic reviews) to identify and amass relevant knowledge sources, critically evaluate the science, and synthesize the credible science to yield robust policy and/or management advice needed to restore the Earth's ecosystems. There are now several examples of restoration-relevant systematic reviews that have identified instances where restoration is entirely ineffective. Systematic reviews also serve as a tool to identify the knowledge gaps and the type of science needed (e.g. repeatable, appropriate replication, use of controls) to improve the evidence base. The restoration community, including both scientists and practitioners, needs to make evidence-based restoration a reality so that we can move from best intentions and acting with so-called "purpose" to acting for meaningful impact. Doing so has the potential to serve as a rallying point for reframing the Anthropocene as a so-called "good" epoch
    corecore