26 research outputs found

    HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency.

    Get PDF
    Lentiviruses such as HIV-1 traverse nuclear pore complexes (NPC) and infect terminally differentiated non-dividing cells, but how they do this is unclear. The cytoplasmic NPC protein Nup358/RanBP2 was identified as an HIV-1 co-factor in previous studies. Here we report that HIV-1 capsid (CA) binds directly to the cyclophilin domain of Nup358/RanBP2. Fusion of the Nup358/RanBP2 cyclophilin (Cyp) domain to the tripartite motif of TRIM5 created a novel inhibitor of HIV-1 replication, consistent with an interaction in vivo. In contrast to CypA binding to HIV-1 CA, Nup358 binding is insensitive to inhibition with cyclosporine, allowing contributions from CypA and Nup358 to be distinguished. Inhibition of CypA reduced dependence on Nup358 and the nuclear basket protein Nup153, suggesting that CypA regulates the choice of the nuclear import machinery that is engaged by the virus. HIV-1 cyclophilin-binding mutants CA G89V and P90A favored integration in genomic regions with a higher density of transcription units and associated features than wild type virus. Integration preference of wild type virus in the presence of cyclosporine was similarly altered to regions of higher transcription density. In contrast, HIV-1 CA alterations in another patch on the capsid surface that render the virus less sensitive to Nup358 or TRN-SR2 depletion (CA N74D, N57A) resulted in integration in genomic regions sparse in transcription units. Both groups of CA mutants are impaired in replication in HeLa cells and human monocyte derived macrophages. Our findings link HIV-1 engagement of cyclophilins with both integration targeting and replication efficiency and provide insight into the conservation of viral cyclophilin recruitment

    HIV Integration Targeting: A Pathway Involving Transportin-3 and the Nuclear Pore Protein RanBP2

    Get PDF
    Genome-wide siRNA screens have identified host cell factors important for efficient HIV infection, among which are nuclear pore proteins such as RanBP2/Nup358 and the karyopherin Transportin-3/TNPO3. Analysis of the roles of these proteins in the HIV replication cycle suggested that correct trafficking through the pore may facilitate the subsequent integration step. Here we present data for coupling between these steps by demonstrating that depletion of Transportin-3 or RanBP2 altered the terminal step in early HIV replication, the selection of chromosomal sites for integration. We found that depletion of Transportin-3 and RanBP2 altered integration targeting for HIV. These knockdowns reduced HIV integration frequency in gene-dense regions and near gene-associated features, a pattern that differed from that reported for depletion of the HIV integrase binding cofactor Psip1/Ledgf/p75. MLV integration was not affected by the Transportin-3 knockdown. Using siRNA knockdowns and integration targeting analysis, we also implicated several additional nuclear proteins in proper target site selection. To map viral determinants of integration targeting, we analyzed a chimeric HIV derivative containing MLV gag, and found that the gag replacement phenocopied the Transportin-3 and RanBP2 knockdowns. Thus, our data support a model in which Gag-dependent engagement of the proper transport and nuclear pore machinery mediate trafficking of HIV complexes to sites of integration

    HIV latency and integration site placement in five cell-based models

    Get PDF
    BACKGROUND: HIV infection can be treated effectively with antiretroviral agents, but the persistence of a latent reservoir of integrated proviruses prevents eradication of HIV from infected individuals. The chromosomal environment of integrated proviruses has been proposed to influence HIV latency, but the determinants of transcriptional repression have not been fully clarified, and it is unclear whether the same molecular mechanisms drive latency in different cell culture models. RESULTS: Here we compare data from five different in vitro models of latency based on primary human T cells or a T cell line. Cells were infected in vitro and separated into fractions containing proviruses that were either expressed or silent/inducible, and integration site populations sequenced from each. We compared the locations of 6,252 expressed proviruses to those of 6,184 silent/inducible proviruses with respect to 140 forms of genomic annotation, many analyzed over chromosomal intervals of multiple lengths. A regularized logistic regression model linking proviral expression status to genomic features revealed no predictors of latency that performed better than chance, though several genomic features were significantly associated with proviral expression in individual models. Proviruses in the same chromosomal region did tend to share the same expressed or silent/inducible status if they were from the same cell culture model, but not if they were from different models. CONCLUSIONS: The silent/inducible phenotype appears to be associated with chromosomal position, but the molecular basis is not fully clarified and may differ among in vitro models of latency

    Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats

    Get PDF

    Patterns of HIV integration and splicing: Windows on mechanism

    No full text
    The retrovirus HIV-1 establishes lifelong infections, facilitated by integration, the covalent insertion of the viral cDNA into the host cell genome. After integration, the viral genes are expressed by host cell machinery. This dissertation focuses on patterns of HIV-1 integration site selection and of viral mRNA splicing, both of which are optimized to drive appropriate viral gene expression, and ultimately, virion production. In an effort to uncover determinants of integration site selection we investigated the role of the nuclear pore, interaction with which promotes HIV-1 integration efficiency. We found that the nuclear transport protein, Transportin-3, and the pore component, RanBP2, were important for viral targeting to chromatin rich in genes. We next asked which viral factors determine this bias. The HIV-1 CA protein has been shown to bind RanBP2. We used CA mutants to show that the preference for gene dense chromatin partially mapped to this interaction. We also sought to identify chromatin features that most strongly attract HIV-1 particles, and to this end we characterized normal distributions of HIV-1 integration sites in primary human T cells at unprecedented depth. In another group of studies, we investigated viral mRNA populations and asked whether their calibration was sensitive to differences between cells. A series of RNA elements interact with host factors to regulate splicing of the HIV-1 pre-RNA transcript. We found that production or degradation of certain mRNAs differed between T cells and a human osteosarcoma cell line and among human donors. Such differences might have ties to cell cycle control. We also detected viral strain-specific splicing patterns. The patterns of integration and mRNA populations described in this dissertation reflect the importance of cellular factors in the HIV-1 replication cycle. These studies aid in the identification of therapeutic targets, while revealing much unexplored complexity in the viral steps of nuclear import, integration and mRNA processing

    Comparing DNA integration site clusters with scan statistics.

    No full text
    MotivationGene therapy with retroviral vectors can induce adverse effects when those vectors integrate in sensitive genomic regions. Retroviral vectors are preferred that target sensitive regions less frequently, motivating the search for localized clusters of integration sites and comparison of the clusters formed by integration of different vectors. Scan statistics allow the discovery of spatial differences in clustering and calculation of false discovery rates providing statistical methods for comparing retroviral vectors.ResultsA scan statistic for comparing two vectors using multiple window widths is proposed with software to detect clustering differentials and compute false discovery rates. Application to several sets of experimentally determined HIV integration sites demonstrates the software. Simulated datasets of various sizes and signal strengths are used to determine the power to discover clusters and evaluate a convenient lower bound. This provides a toolkit for planning evaluations of new gene therapy vectors.Availability and implementationThe geneRxCluster R package containing a simple tutorial and usage hints is available from http://www.bioconductor.org

    Genome analysis Comparing DNA integration site clusters with scan statistics

    No full text
    ABSTRACT Motivation: Gene therapy with retroviral vectors can induce adverse effects when those vectors integrate in sensitive genomic regions. Retroviral vectors are preferred that target sensitive regions less frequently, motivating the search for localized clusters of integration sites and comparison of the clusters formed by integration of different vectors. Scan statistics allow the discovery of spatial differences in clustering and calculation of false discovery rates providing statistical methods for comparing retroviral vectors. Results: A scan statistic for comparing two vectors using multiple window widths is proposed with software to detect clustering differentials and compute false discovery rates. Application to several sets of experimentally determined HIV integration sites demonstrates the software. Simulated datasets of various sizes and signal strengths are used to determine the power to discover clusters and evaluate a convenient lower bound. This provides a toolkit for planning evaluations of new gene therapy vectors. Availability and implementation: The geneRxCluster R package containing a simple tutorial and usage hints is available from http:// www.bioconductor.org
    corecore