46 research outputs found
Impaired CD4 + T-cell proliferation and effector function correlates with repressive histone methylation events in a mouse model of severe sepsis
Immunosuppression following severe sepsis remains a significant human health concern, as long-term morbidity and mortality rates of patients who have recovered from life-threatening septic shock remain poor. Mouse models of severe sepsis indicate this immunosuppression may be partly due to alterations in myeloid cell function; however, the effect of severe sepsis on subsequent CD4 + T-cell responses remains unclear. In the present study, CD4 + T cells from mice subjected to an experimental model of severe sepsis (cecal ligation and puncture (CLP)) were analyzed in vitro . CD4 + CD62L + T cells from CLP mice exhibited reduced proliferative capacity and altered gene expression. Additionally, CD4 + CD62L + T cells from CLP mice exhibit dysregulated cytokine production after in vitro skewing with exogenous cytokines, indicating a decreased capability of these cells to commit to either the T H 1 or T H 2 lineage. Repressive histone methylation marks were also evident at promoter regions for the T H 1 cytokine IFN-Γ and the T H 2 transcription factor GATA-3 in naÏve CD4 + T cells from CLP mice. These results provide evidence that CD4 + T-cell subsets from post-septic mice exhibit defects in activation and effector function, possibly due to chromatin remodeling proximal to genes involved in cytokine production or gene transcription.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71365/1/998_ftp.pd
TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events
Ligands from dying cells are a source of Toll-like receptor (TLR) activating agents. Although TLR3 is known to respond to RNA from necrotic cells, the relative importance of this response in vivo during acute inflammatory processes has not been fully explored. We observed the involvement of TLR3 activation during experimental polymicrobial septic peritonitis and ischemic gut injury in the absence of an exogenous viral stimulus. In TLR3-deficient mice, increased chemokine/cytokine levels and neutrophil recruitment characterized the initial inflammatory responses in both injury models. However, the levels of inflammatory chemokines and tumor necrosis factor α quickly returned to baseline in tlr3−/− mice, and these mice were protected from the lethal effects of sustained inflammation. Macrophages from tlr3−/− mice responded normally to other TLR ligands but did not respond to RNA from necrotic neutrophils. Importantly, an immunoneutralizing antibody directed against TLR3 attenuated the generation of inflammatory chemokines evoked by byproducts from necrotic neutrophils cultured with wild-type macrophages. In vivo, anti-TLR3 antibody attenuated the tissue injury associated with gut ischemia and significantly decreased sepsis-induced mortality. Collectively, these data show that TLR3 is a regulator of the amplification of immune response and serves an endogenous sensor of necrosis, independent of viral activation
Dysregulated Cytokine Expression by CD4+ T cells from Post-Septic Mice Modulates both Th1 and Th2-Mediated Granulomatous Lung Inflammation
Previous epidemiological studies in humans and experimental studies in animals indicate that survivors of severe sepsis exhibit deficiencies in the activation and effector function of immune cells. In particular, CD4+ T lymphocytes can exhibit reduced proliferative capacity and improper cytokine responses following sepsis. To further investigate the cell-intrinsic defects of CD4+ T cells following sepsis, splenic CD4+ T cells from sham surgery and post-septic mice were transferred into lymphopenic mice. These recipient mice were then subjected to both TH1-(purified protein derivative) and TH2-(Schistosoma mansoni egg antigen) driven models of granulomatous lung inflammation. Post-septic CD4+ T cells mediated smaller TH1 and larger TH2 lung granulomas as compared to mice receiving CD4+ T cells from sham surgery donors. However, cytokine production by lymph node cells in antigen restimulation assays indicated increased pan-specific cytokine expression by post-septic CD4+ T cell recipient mice in both TH1 and TH2 granuloma models. These include increased production of TH2 cytokines in TH1 inflammation, and increased production of TH1 cytokines in TH2 inflammation. These results suggest that cell-intrinsic defects in CD4+ T cell effector function can have deleterious effects on inflammatory processes post-sepsis, due to a defect in the proper regulation of TH-specific cytokine expression
The Critical Role of Notch Ligand Delta-like 1 in the Pathogenesis of Influenza A Virus (H1N1) Infection
Influenza A viral infections have been identified as the etiologic agents for historic pandemics, and contribute to the annual mortality associated with acute viral pneumonia. While both innate and acquired immunity are important in combating influenza virus infection, the mechanism connecting these arms of the immune system remains unknown. Recent data have indicated that the Notch system is an important bridge between antigen-presenting cells (APCs) and T cell communication circuits and plays a central role in driving the immune system to overcome disease. In the present study, we examine the role of Notch signaling during influenza H1N1 virus infection, focusing on APCs. We demonstrate here that macrophages, but not dendritic cells (DCs), increased Notch ligand Delta-like 1 (Dll1) expression following influenza virus challenge. Dll1 expression on macrophages was dependent on retinoic acid-inducible gene-I (RIG-I) induced type-I IFN pathway, and not on the TLR3-TRIF pathway. We also found that IFNα-Receptor knockout mice failed to induce Dll1 expression on lung macrophages and had enhanced mortality during influenza virus infection. Our results further showed that specific neutralization of Dll1 during influenza virus challenge induced higher mortality, impaired viral clearance, and decreased levels of IFN-γ. In addition, we blocked Notch signaling by using γ-secretase inhibitor (GSI), a Notch signaling inhibitor. Intranasal administration of GSI during influenza infection also led to higher mortality, and higher virus load with excessive inflammation and an impaired production of IFN-γ in lungs. Moreover, Dll1 expression on macrophages specifically regulates IFN-γ levels from CD4+and CD8+T cells, which are important for anti-viral immunity. Together, the results of this study show that Dll1 positively influences the development of anti-viral immunity, and may provide mechanistic approaches for modifying and controlling the immune response against influenza H1N1 virus infection
Cell-Free Antigens from Paracoccidioides brasiliensis Drive IL-4 Production and Increase the Severity of Paracoccidioidomycosis
The thermally dimorphic fungus Paracoccidioides brasiliensis (Pb) is the causative agent of paracoccidioidomycosis (PCM), one of the most frequent systemic mycosis that affects the rural population in Latin America. PCM is characterized by a chronic inflammatory granulomatous reaction, which is consequence of a Th1-mediated adaptive immune response. In the present study we investigated the mechanisms involved in the immunoregulation triggered after a prior contact with cell-free antigens (CFA) during a murine model of PCM. The results showed that the inoculation of CFA prior to the infection resulted in disorganized granulomatous lesions and increased fungal replication in the lungs, liver and spleen, that paralleled with the higher levels of IL-4 when compared with the control group. The role of IL-4 in facilitating the fungal growth was demonstrated in IL-4-deficient- and neutralizing anti-IL-4 mAb-treated mice. The injection of CFA did not affect the fungal growth in these mice, which, in fact, exhibited a significant diminished amount of fungus in the tissues and smaller granulomas. Considering that in vivo anti-IL-4-application started one week after the CFA-inoculum, it implicates that IL-4-CFA-induced is responsible by the mediation of the observed unresponsiveness. Further, the characterization of CFA indicated that a proteic fraction is required for triggering the immunosuppressive mechanisms, while glycosylation or glycosphingolipids moieties are not. Taken together, our data suggest that the prior contact with soluble Pb antigens leads to severe PCM in an IL-4 dependent manner
An Accessory to the ‘Trinity’: SR-As Are Essential Pathogen Sensors of Extracellular dsRNA, Mediating Entry and Leading to Subsequent Type I IFN Responses
Extracellular RNA is becoming increasingly recognized as a signaling molecule. Virally derived double stranded (ds)RNA released into the extracellular space during virus induced cell lysis acts as a powerful inducer of classical type I interferon (IFN) responses; however, the receptor that mediates this response has not been identified. Class A scavenger receptors (SR-As) are likely candidates due to their cell surface expression and ability to bind nucleic acids. In this study, we investigated a possible role for SR-As in mediating type I IFN responses induced by extracellular dsRNA in fibroblasts, a predominant producer of IFNβ. Fibroblasts were found to express functional SR-As, even SR-A species thought to be macrophage specific. SR-A specific competitive ligands significantly blocked extracellular dsRNA binding, entry and subsequent interferon stimulated gene (ISG) induction. Candidate SR-As were systematically investigated using RNAi and the most dramatic inhibition in responses was observed when all candidate SR-As were knocked down in unison. Partial inhibition of dsRNA induced antiviral responses was observed in vivo in SR-AI/II-/- mice compared with WT controls. The role of SR-As in mediating extracellular dsRNA entry and subsequent induced antiviral responses was observed in both murine and human fibroblasts. SR-As appear to function as ‘carriers’, facilitating dsRNA entry and delivery to the established dsRNA sensing receptors, specifically TLR3, RIGI and MDA-5. Identifying SR-As as gatekeepers of the cell, mediating innate antiviral responses, represents a novel function for this receptor family and provides insight into how cells recognize danger signals associated with lytic virus infections. Furthermore, the implications of a cell surface receptor capable of recognizing extracellular RNA may exceed beyond viral immunity to mediating other important innate immune functions