887 research outputs found

    Spatio-temporal variation in leaf area index in the Yan Mountains over the past 40 years and its relationship to hydrothermal conditions

    Get PDF
    Changes in hydrothermal conditions have significant effects on vegetation, but there is still a lack of understanding of how vegetation responds to land surface (surface temperature and soil moisture) and meteorological (temperature and precipitation) conditions in mountain regions. This study examined the trends of leaf area index (LAI) in the Yan Mountains over the last four decades using Global Land Surface Satellite (GLASS) data. The results showed a persistent increase of LAI (greening) over 20 % to 80 % of the study area in growing season, spring, summer and autumn. Anthropogenic activities caused the greening trend by crop management before 2000 and afforestation after 2000. The increasing rate of LAI varied with elevation, and the most significant increase occurred in areas between 300 and 900 m, and the lowest increase occurred in areas below 300 m. Moreover, we found that LAI was negatively correlated with land surface temperature and soil moisture, but positively correlated with precipitation and air temperature. The time-lag effect was found between hydro thermal factors and LAI in the past four decades. There was a time lag of 2-3 months between LAI changes and temperature/precipitation during the early and late stages of the growing season, and a time lag of 0-1 month during the middle stage. Specifically, there was no time lag in vegetation response to surface soil moisture, and a time lag of 2-3 months in vegetation response to land surface temperature from July to October. Our findings provide insights into how vegetation adapts to land surface and climatic hydrothermal conditions in mountain regions and can be used by governments to develop policies for ecological protection

    Frontiers in soil ecology—Insights from the World Biodiversity Forum 2022

    Get PDF
    Global change is affecting soil biodiversity and functioning across all terrestrial ecosystems. Still, much is unknown about how soil biodiversity and function will change in the future in response to simultaneous alterations in climate and land use, as well as other environmental drivers. It is crucial to understand the direct, indirect and interactive effects of global change drivers on soil communities and ecosystems across environmental contexts, not only today but also in the near future. This is particularly relevant for international efforts to tackle climate change like the Paris Agreement, and considering the failure to achieve the 2020 biodiversity targets, especially the target of halting soil degradation. Here, we outline the main frontiers related to soil ecology that were presented and discussed at the thematic sessions of the World Biodiversity Forum 2022 in Davos, Switzerland. We highlight multiple frontiers of knowledge associated with data integration, causal inference, soil biodiversity and function scenarios, critical soil biodiversity facets, underrepresented drivers, global collaboration, knowledge application and transdisciplinarity, as well as policy and public communication. These identified research priorities are not only of immediate interest to the scientific community but may also be considered in research priority programmes and calls for funding

    How anthropogenic shifts in plant community composition alter soil food webs.

    Get PDF
    There are great concerns about the impacts of soil biodiversity loss on ecosystem functions and services such as nutrient cycling, food production, and carbon storage. A diverse community of soil organisms that together comprise a complex food web mediates such ecosystem functions and services. Recent advances have shed light on the key drivers of soil food web structure, but a conceptual integration is lacking. Here, we explore how human-induced changes in plant community composition influence soil food webs. We present a framework describing the mechanistic underpinnings of how shifts in plant litter and root traits and microclimatic variables impact on the diversity, structure, and function of the soil food web. We then illustrate our framework by discussing how shifts in plant communities resulting from land-use change, climatic change, and species invasions affect soil food web structure and functioning. We argue that unravelling the mechanistic links between plant community trait composition and soil food webs is essential to understanding the cascading effects of anthropogenic shifts in plant communities on ecosystem functions and services

    Trait coordination in boreal mosses reveals a bryophyte economics spectrum

    Get PDF
    The study of plant trait spectra and their association with trade-offs in resource use strategy has greatly advanced our understanding of vascular plant function, yet trait spectra remain poorly studied in bryophytes, particularly outside of the Sphagnum genus. Here, we measured 25 traits related to carbon, nutrient and water conservation in 60 moss canopies (each dominated by one of 15 moss species) across diverse boreal forest habitats and used bi-variate correlations and multi-variate analyses to assess trait coordination and trait spectra. We found substantial trait coordination along a main principal components axis driven by trade-offs in carbon, nutrient and water conservation strategies. Along this trait spectrum, traits varied from resource-acquisitive at one end (e.g. high maximum photosynthetic capacity, high tissue nitrogen content, low water-holding capacity) to resource-conservative at the other end, in line with resource economics theory. Traits related to carbon turnover (photosynthesis and respiration rates, litter decomposability) were positively related to nitrogen content and to desiccation rates, in line with global trait spectra in vascular plants. However, architectural traits of the moss shoots and of the moss canopy were generally unrelated to the main axis of trait variation and formed a secondary axis of trait variation, contrary to what is observed for vascular plants. Resource-conservative trait spectra dominated in moss canopies from open and wet habitats (i.e. mires), indicating that high irradiance and possibly high moisture fluctuation induce a resource-conservative trait strategy in mosses. Synthesis. Our work suggests that trait relationships that are well established for vascular plants can be extended for bryophytes as well. Bryophyte trait spectra can be powerful tools to improve our understanding of ecosystem processes in moss-dominated ecosystems, such as boreal or arctic environments, where bryophyte communities exert strong control on nutrient and carbon cycling

    Effects of nitrogen addition and mowing on nitrogen- and water-use efficiency of Artemisia frigida in a grassland restored from an abandoned cropland

    Get PDF
    Aims Competition among plants in a community usually depends on their nitrogen (N)-use efficiency (NUE) and water-use efficiency (WUE) in arid and semi-arid regions. Artemisia frigida is an indicator species in heavily degraded grassland, however, how its NUE and WUE respond to N addition in different successional stages is still unclear, especially with mowing, a common management practice in semi-arid grasslands.Methods Based on a long-term controlled experiment with N addition and mowing in an abandoned cropland from 2006 to 2013, we investigated the NUE and WUE of A. frigida in two patches (i.e. grass and herb patches) in 2013 which represented two potential successional stages from herb to grass communities. The coverage of A. frigida was higher (about 50%) in the herb patch than in the grass patch (about 10%). Stable isotopic C (delta C-13) and N (delta N-15) as well as C and N pools were measured in plants and soils. NUE was calculated as leaf C/N, and leaf delta C-13 values were used as a proxy for WUE.Important Findings N addition did not affect WUE of A. frigida, but significantly decreased NUE by 42.9% and 26.6% in grass and herb patches, respectively. The response of NUE to N addition was related to altering utilization of different N sources (NH4+ vs. NO3-) by A. frigida according to the changed relationship between leaf delta N-15/soil delta N-15 and NUE. Mowing had no effect on NUE regardless of N addition, but significantly increased WUE by 2.3% for A. frigida without N addition in the grass patch. The addition of N reduced the positive effect of mowing on its WUE in grass patch. Our results suggested that decreased NUE and/or WUE of A. frigida under mowing and N addition could reduce its competition, and further accelerate restoration succession from the abandoned cropland to natural grassland in the semi-arid region

    Bryosphere Loss Impairs Litter Decomposition Consistently Across Moss Species, Litter Types, and Micro-Arthropod Abundance

    Get PDF
    The bryosphere (that is, ground mosses and their associated biota) is a key driver of nutrient and carbon dynamics in many terrestrial ecosystems, in part because it regulates litter decomposition. However, we have a poor understanding of how litter decomposition responds to changes in the bryosphere, including changes in bryosphere cover, moss species, and bryosphere-associated biota. Specifically, the contribution of micro-arthropods to litter decomposition in the bryosphere is unclear. Here, we used a 16-month litterbag field experiment in two boreal forests to investigate bryosphere effects on litter decomposition rates among two moss species (Pleurozium schreberi and Hylocomium splendens), and two litter types (higher-quality Betula pendula litter and lower-quality P. schreberi litter). Additionally, we counted all micro-arthropods in the litterbags and identified them to functional groups. We found that bryosphere removal reduced litter decomposition rates by 28% and micro-arthropod abundance by 29% and led to a colder micro-climate. Litter decomposition rates and micro-arthropod abundance were uncorrelated overall, but were positively correlated in B. pendula litterbags. Bryosphere effects on litter decomposition rates were consistent across moss species, litter types, and micro-arthropod abundances and community compositions. These findings suggest that micro-arthropods play a minor role in litter decomposition in the boreal forest floor, suggesting that other factors (for example, micro-climate, nutrient availability) likely drive the positive effect of the bryosphere on decomposition rates. Our results point to a substantial and consistent impairment of litter decomposition in response to loss of moss cover, which could have important implications for nutrient and carbon cycling in moss-dominated ecosystems

    Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies

    Get PDF
    Understanding how plant species influence soil nutrient cycling is a major theme in terrestrial ecosystem ecology. However, the prevailing paradigm has mostly focused on litter decomposition, while rhizosphere effects on soil organic matter (SOM) decomposition have attracted little attention. Using a dual(13)C/N-15 labeling approach in a 'common garden' glasshouse experiment, we investigated how the economic strategies of 12 grassland plant species (graminoids, forbs and legumes) drive soil nitrogen (N) cycling via rhizosphere processes, and how this in turn affects plant N acquisition and growth. Acquisitive species with higher photosynthesis, carbon rhizodeposition and N uptake than conservative species induced a stronger acceleration of soil N cycling through rhizosphere priming of SOM decomposition. This allowed them to take up larger amounts of N and allocate it above ground to promote photosynthesis, thereby sustaining their faster growth. The N-2-fixation ability of legumes enhanced rhizosphere priming by promoting photosynthesis and rhizodeposition. Our study demonstrates that the economic strategies of plant species regulate a plant-soil carbon-nitrogen feedback operating through the rhizosphere. These findings provide novel mechanistic insights into how plant species with contrasting economic strategies sustain their nutrition and growth through regulating the cycling of nutrients by soil microbes in their rhizosphere

    Microclimate, an important part of ecology and biogeography

    Get PDF
    Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeography: We highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem management: Microclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate science: We showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management

    Plant-soil feedback in the ‘real world’: how does fire fit into all of this?

    Get PDF
    Aims: Plant–soil feedback (PSF) is an important mechanism controlling plant growth, vegetation dynamics, and longer-term and larger-scale patterns of plant community diversity. We know that feedback between plants and soil biota depends on several external factors, such as nutrient and water availability, and interactions with neighbouring plants. We argue that in the ‘real world’, PSF are not working in isolation but instead proceed within a complex context of multiple interacting factors. Fire is one of those complex external factors which could greatly alter PSF by re-setting or re-directing plant-soil biota interactions. Methods: We reviewed key literature on the effects of fire on soil biota and soil physicochemical properties with soil depth, to generate predictions on the complex effects of fire on PSF. Results: We highlight that fire has strong potential to directly and indirectly affect the strength of PSF. To what extent this influences longer-term plant community trajectories depends on the interactions between fire characteristics and ecosystem type. Here, we conceptualized these effects of fire on soil properties and biota, and then discuss the main pathways through which fire should alter PSF. Conclusions: We think that PSF processes should be nullified under and after fire. Average neutral PSF responses are expected to be more common in the short-term or within the timeframe required for major soil microbial players to regain their pre-fire abundances and diversity. We conclude by providing directions for future research and possible methods to study fire effects on PSF both in the field and under controlled conditions.EEA San LuisFil: Kardol, P. Swedish University of Agricultural Sciences. Department of Forest Ecology and Management; SueciaFil: Yang, T. Agriculture and Agri-Food Canada. Swift Current Research & Development Centre; CanadáFil: Arroyo, Daniel Nicolas. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Luis; ArgentinaFil: Teste, Francois Philippe. Agriculture and Agri-Food Canada. Swift Current Research & Development Centre; CanadáFil: Teste, Francois Philippe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis; ArgentinaFil: Teste, Francois Philippe. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis; Argentin

    Root trait variation along a sub-arctic tundra elevational gradient

    Get PDF
    Elevational gradients are useful for predicting how plant communities respond to global warming, because communities at lower elevations experience warmer temperatures. Fine root traits and root trait variation could play an important role in determining plant community responses to warming in cold-climate ecosystems where a large proportion of plant biomass is allocated belowground. Here, we investigated the effects of elevation-associated temperature change on twelve chemical and morphological fine root traits of plant species and plant communities in a Swedish subarctic tundra. We also assessed the relative contributions of plant species turnover and intraspecific variation to the total amount of community-level root trait variation explained by elevation. Several root traits, both at the species and whole community levels, had significant linear or quadratic relationships with elevation, but the direction and strength of these relationships varied among traits and plant species. Further, we found no support for a unidirectional change from more acquisitive root trait values at the lower elevations towards trait values associated with greater nutrient conservation at the higher elevations, either at the species or community level. On the other hand, root trait coefficients of variation at the community level increased with elevation for several root traits. Further, for a large proportion of the community-level traits we found that intraspecific variation was relatively more important than species turnover, meaning that trait plasticity is important for driving community-level trait responses to environmental factors in this tundra system. Our findings indicate that with progressing global warming, intraspecific trait variation may drive plant community composition but this may not necessarily lead to shifts in root resource-acquisition strategy for all species
    • …
    corecore