710 research outputs found

    Optimal paths on the road network as directed polymers

    Get PDF
    We analyze the statistics of the shortest and fastest paths on the road network between randomly sampled end points. To a good approximation, these optimal paths are found to be directed in that their lengths (at large scales) are linearly proportional to the absolute distance between them. This motivates comparisons to universal features of directed polymers in random media. There are similarities in scalings of fluctuations in length/time and transverse wanderings, but also important distinctions in the scaling exponents, likely due to long-range correlations in geographic and man-made features. At short scales the optimal paths are not directed due to circuitous excursions governed by a fat-tailed (power-law) probability distribution.Comment: 5 pages, 7 figure

    First Passage Distributions in a Collective Model of Anomalous Diffusion with Tunable Exponent

    Full text link
    We consider a model system in which anomalous diffusion is generated by superposition of underlying linear modes with a broad range of relaxation times. In the language of Gaussian polymers, our model corresponds to Rouse (Fourier) modes whose friction coefficients scale as wavenumber to the power 2z2-z. A single (tagged) monomer then executes subdiffusion over a broad range of time scales, and its mean square displacement increases as tαt^\alpha with α=1/z\alpha=1/z. To demonstrate non-trivial aspects of the model, we numerically study the absorption of the tagged particle in one dimension near an absorbing boundary or in the interval between two such boundaries. We obtain absorption probability densities as a function of time, as well as the position-dependent distribution for unabsorbed particles, at several values of α\alpha. Each of these properties has features characterized by exponents that depend on α\alpha. Characteristic distributions found for different values of α\alpha have similar qualitative features, but are not simply related quantitatively. Comparison of the motion of translocation coordinate of a polymer moving through a pore in a membrane with the diffusing tagged monomer with identical α\alpha also reveals quantitative differences.Comment: LaTeX, 10 pages, 8 eps figure

    Passive Sliders on Growing Surfaces and (anti-)Advection in Burger's Flows

    Full text link
    We study the fluctuations of particles sliding on a stochastically growing surface. This problem can be mapped to motion of passive scalars in a randomly stirred Burger's flow. Renormalization group studies, simulations, and scaling arguments in one dimension, suggest a rich set of phenomena: If particles slide with the avalanche of growth sites (advection with the fluid), they tend to cluster and follow the surface dynamics. However, for particles sliding against the avalanche (anti-advection), we find slower diffusion dynamics, and density fluctuations with no simple relation to the underlying fluid, possibly with continuously varying exponents.Comment: 4 pages revtex

    Renormalization and Hyperscaling for Self-Avoiding Manifold Models

    Full text link
    The renormalizability of the self-avoiding manifold (SAM) Edwards model is established. We use a new short distance multilocal operator product expansion (MOPE), which extends methods of local field theories to a large class of models with non-local singular interactions. This validates the direct renormalization method introduced before, as well as scaling laws. A new general hyperscaling relation for the configuration exponent gamma is derived. Manifolds at the Theta-point, and long range Coulomb interactions are briefly discussed.Comment: 10 pages + 1 figure, TeX + harvmac & epsf (uuencoded file), SPhT/93-07

    Constraints on stable equilibria with fluctuation-induced forces

    Full text link
    We examine whether fluctuation-induced forces can lead to stable levitation. First, we analyze a collection of classical objects at finite temperature that contain fixed and mobile charges, and show that any arrangement in space is unstable to small perturbations in position. This extends Earnshaw's theorem for electrostatics by including thermal fluctuations of internal charges. Quantum fluctuations of the electromagnetic field are responsible for Casimir/van der Waals interactions. Neglecting permeabilities, we find that any equilibrium position of items subject to such forces is also unstable if the permittivities of all objects are higher or lower than that of the enveloping medium; the former being the generic case for ordinary materials in vacuum.Comment: 4 pages, 1 figur

    Adsorption of polymers on a fluctuating surface

    Full text link
    We study the adsorption of polymer chains on a fluctuating surface. Physical examples are provided by polymer adsorption at the rough interface between two non-miscible liquids, or on a membrane. In a mean-field approach, we find that the self--avoiding chains undergo an adsorption transition, accompanied by a stiffening of the fluctuating surface. In particular, adsorption of polymers on a membrane induces a surface tension and leads to a strong suppression of roughness.Comment: REVTEX, 9 pages, no figure

    Energy Barriers to Motion of Flux Lines in Random Media

    Full text link
    We propose algorithms for determining both lower and upper bounds for the energy barriers encountered by a flux line in moving through a two-dimensional random potential. Analytical arguments, supported by numerical simulations, suggest that these bounds scale with the length tt of the line as t1/3t^{1/3} and t1/3lntt^{1/3}\sqrt{\ln t}, respectively. This provides the first confirmation of the hypothesis that barriers have the same scaling as the fluctuation in the free energy. \pacs{PACS numbers: 74.60.Ge, 05.70.Ln, 05.40.+j}Comment: 4 pages Revtex, 2 figures, to appear in PRL 75, 1170 (1995

    Phases of Josephson Junction Ladders

    Full text link
    We study a Josephson junction ladder in a magnetic field in the absence of charging effects via a transfer matrix formalism. The eigenvalues of the transfer matrix are found numerically, giving a determination of the different phases of the ladder. The spatial periodicity of the ground state exhibits a devil's staircase as a function of the magnetic flux filling factor ff. If the transverse Josephson coupling is varied a continuous superconducting-normal transition in the transverse direction is observed, analogous to the breakdown of the KAM trajectories in dynamical systems.Comment: 12 pages with 3 figures, REVTE

    Universal and non-universal tails of distribution functions in the directed polymer and KPZ problems

    Full text link
    The optimal fluctuation approach is applied to study the most distant (non-universal) tails of the free-energy distribution function P(F) for an elastic string (of a large but finite length L) interacting with a quenched random potential. A further modification of this approach is proposed which takes into account the renormalization effects and allows one to study the most close (universal) parts of the tails. The problem is analyzed for different dimensions of a space in which the polymer is imbedded. In terms the stochastic growth problem, the same distribution function describes the distribution of heights in the regime of a non-stationary growth in a situation when an interface starts to grow from a flat configuration.Comment: 17 pages, 2 figures, the final version, two paragraphs added to the conclusio
    corecore