530 research outputs found

    Engineering of spin-lattice relaxation dynamics by digital growth of diluted magnetic semiconductor CdMnTe

    Full text link
    The technological concept of "digital alloying" offered by molecular-beam epitaxy is demonstrated to be a very effective tool for tailoring static and dynamic magnetic properties of diluted magnetic semiconductors. Compared to common "disordered alloys" with the same Mn concentration, the spin-lattice relaxation dynamics of magnetic Mn ions has been accelerated by an order of magnitude in (Cd,Mn)Te digital alloys, without any noticeable change in the giant Zeeman spin splitting of excitonic states, i.e. without effect on the static magnetization. The strong sensitivity of the magnetization dynamics to clustering of the Mn ions opens a new degree of freedom for spin engineering.Comment: 9 pages, 3 figure

    Ising Quantum Hall Ferromagnet in Magnetically Doped Quantum Wells

    Full text link
    We report on the observation of the Ising quantum Hall ferromagnet with Curie temperature TCT_C as high as 2 K in a modulation-doped (Cd,Mn)Te heterostructure. In this system field-induced crossing of Landau levels occurs due to the giant spin-splitting effect. Magnetoresistance data, collected over a wide range of temperatures, magnetic fields, tilt angles, and electron densities, are discussed taking into account both Coulomb electron-electron interactions and s−-d coupling to Mn spin fluctuations. The critical behavior of the resistance ``spikes'' at T→TCT \to T_C corroborates theoretical suggestions that the ferromagnet is destroyed by domain excitations.Comment: revised, 4 pages, 4 figure

    Single spin optical read-out in CdTe/ZnTe quantum dot studied by photon correlation spectroscopy

    Full text link
    Spin dynamics of a single electron and an exciton confined in CdTe/ZnTe quantum dot is investigated by polarization-resolved correlation spectroscopy. Spin memory effects extending over at least a few tens of nanoseconds have been directly observed in magnetic field and described quantitatively in terms of a simple rate equation model. We demonstrate an effective (68%) all-optical read-out of the single carrier spin state through probing the degree of circular polarization of exciton emission after capture of an oppositely charged carrier. The perturbation introduced by the pulsed optical excitation serving to study the spin dynamics has been found to be the main source of the polarization loss in the read-out process. In the limit of low laser power the read-out efficiency extrapolates to a value close to 100%. The measurements allowed us as well to determine neutral exciton spin relaxation time ranging from 3.4 +/- 0.1 ns at B = 0 T to 16 +/- 3 ns at B = 5 T.Comment: to appear in Phys. Rev.

    Fractional quantum Hall effect in CdTe

    Get PDF
    The fractional quantum Hall (FQH) effect is reported in a high mobility CdTe quantum well at mK temperatures. Fully-developed FQH states are observed at filling factor 4/3 and 5/3 and are found to be both spin-polarized ground state for which the lowest energy excitation is not a spin-flip. This can be accounted for by the relatively high intrinsic Zeeman energy in this single valley 2D electron gas. FQH minima are also observed in the first excited (N=1) Landau level at filling factor 7/3 and 8/3 for intermediate temperatures.Comment: Submitte

    Quantum Hall states under conditions of vanishing Zeeman energy

    Full text link
    We report on magneto-transport measurements of a two-dimensional electron gas confined in a Cd0.997_{0.997}Mn0.003_{0.003}Te quantum well structure under conditions of vanishing Zeeman energy. The electron Zeeman energy has been tuned via the s−ds-d exchange interaction in order to probe different quantum Hall states associated with metallic and insulating phases. We have observed that reducing Zeeman energy to zero does not necessary imply the disappearing of quantum Hall states, i.e. a closing of the spin gap. The spin gap value under vanishing Zeeman energy conditions is shown to be dependent on the filling factor. Numerical simulations support a qualitative description of the experimental data presented in terms of a crossing or an avoided-crossing of spin split Landau levels with same orbital quantum number NN

    Collective character of spin excitations in a system of Mn2+^{2+} spins coupled to a two-dimensional electron gas

    Full text link
    We have studied the low energy spin excitations in n-type CdMnTe based dilute magnetic semiconductor quantum wells. For magnetic fields for which the energies for the excitation of free carriers and Mn spins are almost identical an anomalously large Knight shift is observed. Our findings suggests the existence of a magnetic field induced ferromagnetic order in these structures, which is in agreement with recent theoretical predictions [J. K{\"o}nig and A. H. MacDonald, submitted Phys. Rev. Lett. (2002)]Comment: 4 figure

    Enhancement of the spin-gap in fully occupied two-dimensional Landau levels

    Full text link
    Polarization-resolved magneto-luminescence, together with simultaneous magneto-transport measurements, have been performed on a two-dimensional electron gas (2DEG) confined in CdTe quantum well in order to determine the spin-splitting of fully occupied electronic Landau levels, as a function of the magnetic field (arbitrary Landau level filling factors) and temperature. The spin splitting, extracted from the energy separation of the \sigma+ and \sigma- transitions, is composed of the ordinary Zeeman term and a many-body contribution which is shown to be driven by the spin-polarization of the 2DEG. It is argued that both these contributions result in a simple, rigid shift of Landau level ladders with opposite spins.Comment: 4 pages, 3 figure
    • …
    corecore