57 research outputs found
Influence of Hydrophilic Surfactants on the W1âW2 Coalescence in Double Emulsion Systems Investigated by Single Droplet Experiments
Double emulsions are a promising formulation for encapsulation and targeted release in pharmaceutics, cosmetics and food. An inner water phase is dispersed in an oil phase, which is again emulsified in a second water phase. The encapsulated inner water phase can be released via diffusion or via coalescence, neither of which is desired during storage but might be intended during application. The two interfaces in a double emulsion are stabilized by a hydrophilic and a lipophilic surfactant, to prevent the coalescence of the outer and the inner emulsion, respectively. This study focuses on the influence of the hydrophilic surfactant on the release of inner water or actives encapsulated therein via coalescence of the inner water droplet with the outer OâW2 interface. Since coalescence and diffusion are difficult to distinguish in double emulsions, single-droplet experiments were used to quantify differences in the stability of inner droplets. Different lipophilic (PGPH and PEG-30 dipolyhydroxylstearate) and hydrophilic surfactants (ethoxylates, SDS and polymeric) were used and resulted in huge differences in stability. A drastic decrease in stability was found for some combinations, while other combinations resulted in inner droplets that could withstand coalescence longer. The destabilization effect of some hydrophilic surfactants depended on their concentration, but was still present at very low concentrations. A huge spread of the coalescence time for multiple determinations was observed for all formulations and the necessary statistical analysis is discussed in this work. The measured stabilities of single droplets are in good accordance with the stability of double emulsions for similar surfactant combinations found in literature. Therefore, single droplet experiments are suggested for a fast evaluation of potentially suitable surfactant combinations for future studies on double-emulsion stability
Evaluating the Stability of Double EmulsionsâA Review of the Measurement Techniques for the Systematic Investigation of Instability Mechanisms
Double emulsions are very promising for various applications in pharmaceutics, cosmetics, and food. Despite lots of published research, only a few products have successfully been marketed due to immense stability problems. This review describes approaches on how to characterize the stability of double emulsions. The measurement methods are used to investigate the influence of the ingredients or the process on the stability, as well as of the environmental conditions during storage. The described techniques are applied either to double emulsions themselves or to model systems. The presented analysis methods are based on microscopy, rheology, light scattering, marker detection, and differential scanning calorimetry. Many methods for the characterization of double emulsions focus only on the release of the inner water phase or of a marker encapsulated therein. Analysis methods for a specific application rarely give information on the actual mechanism, leading to double emulsion breakage. In contrast, model systems such as simple emulsions, microfluidic emulsions, or single-drop experiments allow for a systematic investigation of diffusion and coalescence between the individual phases. They also give information on the order of magnitude in which they contribute to the failure of the overall system. This review gives an overview of various methods for the characterization of double emulsion stability, describing the underlying assumptions and the information gained. With this review, we intend to assist in the development of stable double emulsion-based products
Influence of Cavitation and Mixing Conditions on Oil Droplet Size in Simultaneous Homogenization and Mixing (SHM)
High-pressure homogenizers (HPH) equipped with a Simultaneous Homogenization and Mixing (SHM) orifice allow for inducing a mixing stream directly into the disruption unit. Previous studies show that by doing so, synergies between the unit operations âemulsificationâ and âmixingâ can be used to save energy, e.g., in homogenization of dairy products, or to extend the application range of HPH. Up to now, process design has mainly been based on the trial and error principle due to incomplete understanding of flow conditions and droplet break-up in the SHM unit. This study aims at a higher level of understanding of cavitation and mixing effects on emulsion droplet size. Experimental data were obtained using a model emulsion of low disperse phase concentration in order to avoid coalescence effects. The different flow conditions are created by varying the process and geometric parameters of an SHM unit. The results show that the oil droplet size only depends on mixing conditions when the emulsion droplets are added in the mixing stream. Furthermore, a smaller oil droplet size can be achieved by reducing cavitation, especially for droplets fed in the high-pressure stream
Influence of Refractive Index Differences on the Signal Strength for Raman-Spectroscopic Measurements of Double Emulsion Droplets
Double emulsions show great potential for encapsulating active substances and protecting them against external influences. However, they tend to become unstable during storage. Research on double emulsions, therefore, focuses on maintaining their microstructure during their shelf life. Optical measurement methods, such as Raman spectroscopy, have hardly been used to date to analyze the microstructure of double emulsions, mainly due to multiple scattering effects. This study investigates the influence of refractive index matching of double emulsion phases by measuring the Raman signal strength of the inner water phase for different refractive index combinations. Ammonium nitrate and glycerol are added to the inner and outer water phase, respectively, to change the refractive indices of both phases. Additionally, polyvinyl alcohol serves as an emulsifier in the outer water phase. The oil phase consists of silicone oil and Dowsil Resin XR 0497 as the emulsifier. The refractive index of the oil phase is kept constant. For individual phase boundaries of single droplets, the refractive index matching plays a minor role. However, if there are many droplets with correspondingly numerous phase boundaries, which leads to multiple scattering during the measurement, the matching has a significant influence on the signal strength of the inner phase. When measuring double emulsions, the phases should always be matched, as this results in higher signals and improves the sensitivity of the measurement
Spray performance and steadiness of an effervescent atomizer and an air-core-liquid-ring atomizer for application in spray drying processes of highly concentrated feeds
Atomization for spray drying of high viscous feed liquids is still a challenging task. For this reason, we investigated the potential of two internal mixing pneumatic atomizers, namely an effervescent atomizer (EA) and an Air-Core-Liquid-Ring (ACLR) atomizer. Both atomizers are characterized by a two-phase flow in the exit orifice. While this can be either a two-phase plug or annular flow in case of the EA geometry, the ACLR atomizer enforces annular flow conditions. In this study, spraying experiments were conducted at liquid viscosities between 0.12 and 0.69 Paâs. The investigations were performed at a constant liquid flow rate of 20 L/h and gas pressures from 0.3 to 0.9 MPa. Besides the commonly used correlation between Gas-to-Liquid-Ratio (GLR) and time-averaged Sauter mean diameters ((SMD) Ì
), we analyzed in-depth the time dependent fluctuation of SMDs, as steady atomization is crucial for spray drying applications. We can conclude that due to strong fluctuations of the SMDs the EA is not suitable for the aimed application in spray drying of high viscous feed liquids. In contrast, the ACLR atomizer is a very promising nozzle for spray drying applications as it delivers much better performance and steadiness also at high liquid viscosities
Denaturation Behavior and Kinetics of Single- and Multi-Component Protein Systems at Extrusion-Like Conditions
In this study, the influence of defined extrusion-like treatment conditions on the denaturation behavior and kinetics of single- and multi-component protein model systems at a protein concentration of 70% (w/w) was investigated. α-Lactalbumin (αLA) and ÎČ-Lactoglobulin (ÎČLG), and whey protein isolate (WPI) were selected as single- and multi-component protein model systems, respectively. To apply defined extrusion-like conditions, treatment temperatures in the range of 60 and 100 °C, shear rates from 0.06 to 50 s, and treatment times up to 90 s were chosen. While an aggregation onset temperature was determined at approximately 73 °C for WPI systems at a shear rate of 0.06 s, two significantly different onset temperatures were determined when the shear rate was increased to 25 and 50 s. These two different onset temperatures could be related to the main fractions present in whey protein (ÎČLG and αLA), suggesting shear-induced phase separation. Application of additional mechanical treatment resulted in an increase in reaction rates for all the investigated systems. Denaturation was found to follow 2.262 and 1.865 order kinetics for αLA and WPI, respectively. The reaction order of WPI might have resulted from a combination of a lower reaction order in the unsheared system (i.e., fractional first order) and higher reaction order for sheared systems, probably due to phase separation, leading to isolated behavior of each fraction at the local level (i.e., fractional second order)
The influence of extrusion processing on the gelation properties of apple pomace dispersions: Involved cell wall components and their gelation kinetics
By-products of fruits and vegetables like apple pomace can serve as techno-functional ingredients in foods. Due to their physicochemical properties, e.g., viscosity, water absorption, or oil-binding, food by-products can modify the texture and sensory perception of products like yogurts and baked goods. It is known that, by extrusion processing, the properties of by-products can be altered. For example, by thermo-mechanical treatment, the capacity of food by-products to increase viscosity is improved. However, the mechanism and involved components leading to the viscosity increase are unknown. Therefore, the complex viscosity of apple pomace dispersions and the involved fractions as pectin (a major part of the water-soluble fraction), water-soluble and water-insoluble fraction, were measured. In the investigated range, an increase in the pectin yield and water solubility was observed with increasing thermo-mechanical treatment by extrusion processing. However, pectin and water-soluble cell wall components had only a limited effect on the complex viscosity of apple pomace dispersions. The insoluble fraction (particles) were investigated regarding their swelling behavior and influence on the complex viscosity. An intensification of thermo-mechanical treatment resulted in increasing swelling behavior
Blending proteins in high moisture extrusion to design meat analogues: Rheological properties, morphology development and product properties
High moisture extrusion (HME) of meat analogues is often performed with raw materials containing multiple components, e.g., blends of different protein-rich raw materials. For instance, blends of soy protein isolate (SPI) and another component, such as wheat gluten, are used particularly frequently. The positive effect of blending on product texture is well known but not yet well understood. Therefore, this work targets investigating the influence of blending in HME at a mechanistic level. For this, SPI and a model protein, whey protein concentrate (WPC), were blended at three different ratios (100:0, 85:15, 70:30) and extruded at typical HME conditions (55% water content, 115/125/133 °C material temperature). Process conditions, rheological properties, morphology development, product structure and product texture were analysed. With increasing WPC percentage, the anisotropic structures became more pronounced and the anisotropy index (AI) higher. The achieved AI from the extrudates with a ratio of 70:30 (SPI:WPC) were considerably higher than comparable extrudates reported in other studies. In all extrudates, a multiphase system was visible whose morphology had changed due to the WPC addition. The WPC led to the formation of a much smaller dispersed phase compared to the overlying multiphase structure, the size of which depends on the thermomechanical stresses. These findings demonstrate that targeted mixing of protein-rich raw materials could be a promising method to tailor the texture of extruded meat analogues
Measurement of the Filling Degree and Droplet Size of Individual Double Emulsion Droplets Using Raman Technologies
Double emulsions arouse great interest in various industries due to their ability to encapsulate value-adding ingredients. However, they tend to be unstable due to their complex structure. Several measurement techniques have already been developed to study and monitor the stability of double emulsions. Especially for the measurement of the filling degree of double emulsions, so far there is no reliable method available. In this paper, a measurement system is presented that can measure the filling degree of water-in-oil-in-water (W/O/W) double emulsions by both spectrometrical and photometrical means. The method is based on the Raman effect and does not require any sample preparation, and the measurement has no negative influence on the double emulsion. It is shown that both spectrometric and photometric Raman techniques can reliably distinguish between double emulsions with filling degrees that have a 0.5% difference. Additionally, oil droplet sizes can be photometrically measured. Furthermore, the measurement system can be integrated into both inline and online emulsification processes
- âŠ