13 research outputs found
Electronic properties of Β-TaON and its surfaces for solar water splitting
This is the final version of the article. Available from Elsevier via the DOI in this record.Recently, oxynitrides materials such as β-TaON has been using as a photoanode material in the field of photocatalysis and is found to be promising due to its suitable band gap and charge carrier mobility. Computational study of the crystalline β-TaON in the form of primitive unit cell, supercell and its N, Ta, and O terminated surfaces are carried out with the help of periodic density functional theory (DFT). Optical and electronic properties of all these different species are simulated, which predict TaON as the best candidate for photocatalytic water splitting contrast to their Ta 2 O 5 and Ta 3 N 5 counterparts. The calculated bandgap, valence band, and conduction band edge positions predict that β-TaON should be an efficient photoanodic material. The valence band is made up of N 2p orbitals with a minor contribution from O 2p, while the conduction band is made up of Ta 5d. Turning to thin films, the valence band maximum; VBM (−6.4 eV vs. vacuum) and the conduction band minimum; CBM (−3.3 eV vs. vacuum) of (010)-O terminated surface are respectively well below and above the redox potentials of water as required for photocatalysis. Charge carriers have smaller effective masses than in the (001)-N terminated film (VBM −5.8 and CBM −3.7 eV vs. vacuum). However, due to wide band gap (3.0 eV) of (010)-O terminated surface, it cannot absorb visible wavelengths. On the other hand, the (001)-N terminated TaON thin film has a smaller band gap in the visible region (2.1 eV) but the bands are not aligned to the redox potential of water. Possibly a mixed phase material would produce an efficient photoanode for solar water splitting, where one phase performs the oxidation and the other reduction.We acknowledge the financial support of Engineering and Physical Science Research Council, UK (EPSRC)under the research grant Nos. EP/P510956/1, EP/P003435/1 and EP/R512801/1. S.K acknowledges the Notur Norwegian supercomputing facilities through project nn4608k and the HyMatSiRen project 272806 by the Research Council of Norway. We also acknowledge Prof. Neil Allan and Dr. Sergio C. Espindola for their help in completing this work
The origin of defects induced in ultra-pure germanium by Electron Beam Deposition
The creation of point defects in the crystal lattices of various
semiconductors by subthreshold events has been reported on by a number of
groups. These observations have been made in great detail using sensitive
electrical techniques but there is still much that needs to be clarified.
Experiments using Ge and Si were performed that demonstrate that energetic
particles, the products of collisions in the electron beam, were responsible
for the majority of electron-beam deposition (EBD) induced defects in a
two-step energy transfer process. Lowering the number of collisions of these
energetic particles with the semiconductor during metal deposition was
accomplished using a combination of static shields and superior vacuum
resulting in devices with defect concentrations lower than cm, the measurement limit of our deep level transient
spectroscopy (DLTS) system. High energy electrons and photons that samples are
typically exposed to were not influenced by the shields as most of these
particles originate at the metal target thus eliminating these particles as
possible damage causing agents. It remains unclear how packets of energy that
can sometimes be as small of 2eV travel up to a m into the material while
still retaining enough energy, that is, in the order of 1eV, to cause changes
in the crystal. The manipulation of this defect causing phenomenon may hold the
key to developing defect free material for future applications.Comment: 18 pages, 9 figure