3 research outputs found

    Implicit learning and individual differences in speech recognition: an exploratory study

    Get PDF
    Individual differences in speech recognition in challenging listening environments are pronounced. Studies suggest that implicit learning is one variable that may contribute to this variability. Here, we explored the unique contributions of three indices of implicit learning to individual differences in the recognition of challenging speech. To this end, we assessed three indices of implicit learning (perceptual, statistical, and incidental), three types of challenging speech (natural fast, vocoded, and speech in noise), and cognitive factors associated with speech recognition (vocabulary, working memory, and attention) in a group of 51 young adults. Speech recognition was modeled as a function of the cognitive factors and learning, and the unique contribution of each index of learning was statistically isolated. The three indices of learning were uncorrelated. Whereas all indices of learning had unique contributions to the recognition of natural-fast speech, only statistical learning had a unique contribution to the recognition of speech in noise and vocoded speech. These data suggest that although implicit learning may contribute to the recognition of challenging speech, the contribution may depend on the type of speech challenge and on the learning task

    Effects of Age, Cognition, and Neural Encoding on the Perception of Temporal Speech Cues

    Get PDF
    Partial funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.Older adults commonly report difficulty understanding speech, particularly in adverse listening environments. These communication difficulties may exist in the absence of peripheral hearing loss. Older adults, both with normal hearing and with hearing loss, demonstrate temporal processing deficits that affect speech perception. The purpose of the present study is to investigate aging, cognition, and neural processing factors that may lead to deficits on perceptual tasks that rely on phoneme identification based on a temporal cue – vowel duration. A better understanding of the neural and cognitive impairments underlying temporal processing deficits could lead to more focused aural rehabilitation for improved speech understanding for older adults. This investigation was conducted in younger (YNH) and older normal-hearing (ONH) participants who completed three measures of cognitive functioning known to decline with age: working memory, processing speed, and inhibitory control. To evaluate perceptual and neural processing of auditory temporal contrasts, identification functions for the contrasting word-pair WHEAT and WEED were obtained on a nine-step continuum of vowel duration, and frequency-following responses (FFRs) and cortical auditory-evoked potentials (CAEPs) were recorded to the two endpoints of the continuum. Multiple linear regression analyses were conducted to determine the cognitive, peripheral, and/or central mechanisms that may contribute to perceptual performance. YNH participants demonstrated higher cognitive functioning on all three measures compared to ONH participants. The slope of the identification function was steeper in YNH than in ONH participants, suggesting a clearer distinction between the contrasting words in the YNH participants. FFRs revealed better response waveform morphology and more robust phase-locking in YNH compared to ONH participants. ONH participants also exhibited earlier latencies for CAEP components compared to the YNH participants. Linear regression analyses revealed that cortical processing significantly contributed to the variance in perceptual performance in the WHEAT/WEED identification functions. These results suggest that reduced neural precision contributes to age-related speech perception difficulties that arise from temporal processing deficits
    corecore