1,334 research outputs found

    An extended scheme for fitting X-ray data with accretion disk spectra in the strong gravity regime

    Full text link
    Accreting black holes are believed to emit X-rays which then mediate information about strong gravity in the vicinity of the emission region. We report on a set of new routines for the Xspec package for analysing X-ray spectra of black-hole accretion disks. The new computational tool significantly extends the capabilities of the currently available fitting procedures that include the effects of strong gravity, and allows one to systematically explore the constraints on more model parameters than previously possible (for example black-hole angular momentum). Moreover, axial symmetry of the disk intrinsic emissivity is not assumed, although it can be imposed to speed up the computations. The new routines can be used also as a stand-alone and flexible code with the capability of handling time-resolved spectra in the regime of strong gravity. We have used the new code to analyse the mean X-ray spectrum from the long XMM--Newton 2001 campaign of the Seyfert 1 galaxy MCG--6-30-15. Consistent with previous findings, we obtained a good fit to the broad Fe K line profile for a radial line intrinsic emissivity law in the disk which is not a simple power law, and for near maximal value of black hole angular momentum. However, equally good fits can be obtained also for small values of the black hole angular momentum. The code has been developed with the aim of allowing precise modelling of relativistic effects. Although we find that current data cannot constrain the parameters of black-hole/accretion disk system well, the approach allows, for a given source or situation, detailed investigations of what features of the data future studies should be focused on in order to achieve the goal of uniquely isolating the parameters of such systems.Comment: Accepted for publication in ApJ S

    Line Emission from an Accretion Disk around a Rotating Black Hole: Toward a Measurement of Frame Dragging

    Get PDF
    Line emission from an accretion disk and a corotating hot spot about a rotating black hole are considered for possible signatures of the frame-dragging effect. We explicitly compare integrated line profiles from a geometrically thin disk about a Schwarzschild and an extreme Kerr black hole, and show that the line profile differences are small if the inner radius of the disk is near or above the Schwarzschild stable-orbit limit of radius 6GM/c^2. However, if the inner disk radius extends below this limit, as is possible in the extreme Kerr spacetime, then differences can become significant, especially if the disk emissivity is stronger near the inner regions. We demonstrate that the first three moments of a line profile define a three-dimensional space in which the presence of material at small radii becomes quantitatively evident in broad classes of disk models. In the context of the simple, thin disk paradigm, this moment-mapping scheme suggests formally that the iron line detected by the Advanced Satellite for Cosmology and Astrophysics mission from MCG-6-30-15 (Tanaka et al. 1995) is 3 times more likely to originate from a disk about a rotating black hole than from a Schwarzschild system. A statistically significant detection of black hole rotation in this way may be achieved after only modest improvements in the quality of data. We also consider light curves and frequency shifts in line emission as a function of time for corotating hot spots in extreme Kerr and Schwarzschild geometries. Both the frequency-shift profile and the light curve from a hot spot are valuable measures of orbital parameters and might possibly be used to detect frame dragging even at radii approaching 6GM/c^2 if the inclination angle of the orbital plane is large.Comment: 15 pages (LaTex), 7 postscript figures; color plot (Figure 1) available at http://cfata2.harvard.edu/bromley/nu_nofun.html (This version contains a new subsection as well as minor corrections.

    Region of magnetic dominance near a rotating black hole

    Get PDF
    This is a brief contribution in which a simplified criterion of the relevance of the test-particle approximation describing motion of material near a magnetized black hole is discussed. Application to processes of the dissipative collimation of astronomical jets (as proposed by de Felice and Curir, 1992) is mentioned.Comment: 11 pages, to appear in General Relativity and Gravitation, also available (with additional illustrations) at http://otokar.troja.mff.cuni.cz/user/karas/au_www/karas/papers.ht

    Chaos in black holes surrounded by gravitational waves

    Get PDF
    The occurrence of chaos for test particles moving around Schwarzschild black holes perturbed by a special class of gravitational waves is studied in the context of the Melnikov method. The explicit integration of the equations of motion for the homoclinic orbit is used to reduce the application of this method to the study of simple graphics.Comment: 15 pages, LaTex

    Gravitational Waves from Chaotic Dynamical System

    Full text link
    To investigate how chaos affects gravitational waves, we study the gravitational waves from a spinning test particle moving around a Kerr black hole, which is a typical chaotic system. To compare the result with those in non-chaotic dynamical system, we also analyze a spinless test particle, which orbit can be complicated in the Kerr back ground although the system is integrable. We estimate the emitted gravitational waves by the multipole expansion of a gravitational field. We find a striking difference in the energy spectra of the gravitational waves. The spectrum for a chaotic orbit of a spinning particle, contains various frequencies, while some characteristic frequencies appear in the case of a spinless particle.Comment: 8 pages, 13 figures. submitted to PR

    The instrumental polarization of the Nasmyth focus polarimetric differential imager NAOS/CONICA (NACO) at the VLT - Implications for time-resolved polarimetric measurements of Sgr A*

    Full text link
    We report on the results of calibrating and simulating the instrumental polarization properties of the ESO VLT adaptive optics camera system NAOS/CONICA (NACO) in the Ks-band. We use the Stokes/Mueller formalism for metallic reflections to describe the instrumental polarization. The model is compared to standard-star observations and time-resolved observations of bright sources in the Galactic center. We find the instrumental polarization to be highly dependent on the pointing position of the telescope and about 4% at maximum. We report a polarization angle offset of 13.28{\deg} due to a position angle offset of the half-wave plate that affects the calibration of NACO data taken before autumn 2009. With the new model of the instrumental polarization of NACO it is possible to measure the polarization with an accuracy of 1% in polarization degree. The uncertainty of the polarization angle is < 5{\deg} for polarization degrees > 4%. For highly sampled polarimetric time series we find that the improved understanding of the polarization properties gives results that are fully consistent with the previously used method to derive the polarization. The small difference between the derived and the previously employed polarization calibration is well within the statistical uncertainties of the measurements, and for Sgr A* they do not affect the results from our relativistic modeling of the accretion process.Comment: 16 pages, 15 figures, 5 tables, accepted by A&A on 2010 October 1

    X-ray iron line variability for the model of an orbiting flare above a black hole accretion disc

    Get PDF
    The broad X-ray iron line, detected in many active galactic nuclei, is likely to be produced by fluorescence from the X-ray illuminated central parts of an accretion disc close to a supermassive black hole. The time-averaged shape of the line can be explained most naturally by a combination of special and general relativistic effects. Such line profiles contain information about the black hole spin and the accretion disc as well as the geometry of the emitting region and may help to test general relativity in the strong gravity regime. In this paper we embark on the computation of the temporal response of the line to the illuminating flux. Previous studies concentrated on the calculation of reverberation signatures from static sources illuminating the disc. In this paper we focus on the more physically justified case of flares located above the accretion disc and corotating with it. We compute the time dependent iron line taking into account all general relativistic effects and show that its shape is of very complex nature, and also present light curves accompanying the iron line variability. We suggest that future X-ray satellites like XMM or Constellation-X may be capable of detecting features present in the computed reverberation maps.Comment: Accepted for publication in MNRAS, 11 pages, 12 figure

    Experimental Indicators of Accretion Processes in Active Galactic Nuclei

    Full text link
    Bright Active Galactic Nuclei are powered by accretion of mass onto the super massive black holes at the centers of the host galaxies. For fainter objects star formation may significantly contribute to the luminosity. We summarize experimental indicators of the accretion processes in Active Galactic Nuclei (AGN), i.e., observable activity indicators that allow us to conclude on the nature of accretion. The Galactic Center is the closest galactic nucleus that can be studied with unprecedented angular resolution and sensitivity. Therefore, here we also include the presentation of recent observational results on Sagittarius A* and the conditions for star formation in the central stellar cluster. We cover results across the electromagnetic spectrum and find that the Sagittarius A* (SgrA*) system is well ordered with respect to its geometrical orientation and its emission processes of which we assume to reflect the accretion process onto the super massive black hole.Comment: 16 pages, 4 figures, conference proceeding: Accretion Processes in Cosmic Sources - APCS2016 - 5-10 September 2016, Saint Petersburg, Russi

    Cardiovascular roles of estrogen receptors: insights gained from knockout models

    Get PDF
    The effects of estrogen are mediated through two functionally distinct receptors, estrogen receptor α (ER- α ), and estrogen receptor β (ER- β ), both of which are expressed in the cardiovascular system. The etiology of cardiovascular disease is believed to result in part from the loss of endogenous estrogen, indicating that estrogen and its receptors may play important roles in the prevention of cardiovascular disease in women

    Hawking radiation and thermodynamics of dynamical black holes in phantom dominated universe

    Full text link
    The thermodynamic properties of dark energy-dominated universe in the presence of a black hole are investigated in the general case of a varying equation-of-state-parameter w(a)w(a). We show that all the thermodynamics quantities are regular at the phantom divide crossing, and particularly the temperature and the entropy of the dark fluid are always positive definite. We also study the accretion process of a phantom fluid by black holes and the conditions required for the validity of the generalized second law of thermodynamics. As a results we obtain a strictly negative chemical potential and an equation-of-state parameter w<5/3.w<-5/3.Comment: 22 pages,3 figure
    corecore