88 research outputs found
Foundations of Black Hole Accretion Disk Theory
This review covers the main aspects of black hole accretion disk theory. We
begin with the view that one of the main goals of the theory is to better
understand the nature of black holes themselves. In this light we discuss how
accretion disks might reveal some of the unique signatures of strong gravity:
the event horizon, the innermost stable circular orbit, and the ergosphere. We
then review, from a first-principles perspective, the physical processes at
play in accretion disks. This leads us to the four primary accretion disk
models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin)
disks, slim disks, and advection-dominated accretion flows (ADAFs). After
presenting the models we discuss issues of stability, oscillations, and jets.
Following our review of the analytic work, we take a parallel approach in
reviewing numerical studies of black hole accretion disks. We finish with a few
select applications that highlight particular astrophysical applications:
measurements of black hole mass and spin, black hole vs. neutron star accretion
disks, black hole accretion disk spectral states, and quasi-periodic
oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at
http://www.livingreviews.org/lrr-2013-
Cerebrospinal fluid drainage options for posthemorrhagic hydrocephalus in premature neonates
Conventional rotator cuff repair complemented by the aid of mononuclear autologous stem cells
A multi-centre randomized controlled trial comparing electrothermal arthroscopic capsulorrhaphy versus open inferior capsular shift for patients with shoulder instability: Protocol implementation and interim performance: Lessons learned from conducting a multi-centre RCT [ISRCTN68224911; NCT00251160]
BACKGROUND: The shoulder is the most frequently dislocated joint in the body. Multiple causes and pathologies account for the various types of shoulder instability. Multi-directional instability (MDI) and multi-directional laxity with antero-inferior instability (MDL-AII) are similar in pathology, less common and more difficult to treat. These instabilities are caused by ligamentous capsular redundancy. When non-operative management fails for these patients, quality of life is significantly impaired and surgical treatment is required to tighten the ligaments and joint capsule. The current reference (gold) standard treatment for MDI/MDL-AII is an open inferior capsular shift (ICS) surgical procedure. An alternative treatment involves arthroscopic thermal shrinkage of redundant capsular tissue to tighten the joint. However, there is a lack of scientific evidence to support the use of this technique called, electrothermal arthroscopic capsulorrhaphy (ETAC). This trial will compare the effectiveness of ETAC to open ICS in patients with MDI and MDL-AII, using patient-based quality of life outcome assessments. METHODS: This study is a multi-centre randomized clinical trial with a calculated sample size of 58 patients (p = 0.05, 80% power). Eligible patients are clinically diagnosed with MDI or MDL-AII and have failed standardized non-operative management. A diagnostic shoulder arthroscopy is performed to confirm eligibility, followed by intra-operative randomization to the ETAC or ICS surgical procedure. The primary outcome is the disease-specific quality of life questionnaire (Western Ontario Shoulder Instability Index), measured at baseline, 3, 6, 12 and 24 months. Secondary outcomes include shoulder-specific measures (American Shoulder and Elbow Surgeons Score and Constant Score). Other outcomes include recurrent instability, complications and operative time. The outcome measurements will be compared on an intention-to-treat basis, using two-sample independent t-tests to assess statistical significance. A Generalized Estimated Equations (GEE) analysis will determine whether there is an effect over time. DISCUSSION: This ongoing trial has encountered unexpected operational and practical issues, including slow patient enrollment due to high intra-operative exclusion rates. However, the authors have a greater understanding of multi-directional laxity in the shoulder and anticipate the results of this trial will provide the medical community with the best scientific clinical evidence on the efficacy of ETAC compared to open ICS
Beneficial Effects of Estrogen in a Mouse Model of Cerebrovascular Insufficiency
BACKGROUND: The M(5) muscarinic acetylcholine receptor is known to play a crucial role in mediating acetylcholine dependent dilation of cerebral blood vessels. Previously, we reported that male M(5) muscarinic acetylcholine knockout mice (M5R(-/-) mice) suffer from a constitutive constriction of cerebral arteries, reduced cerebral blood flow, dendritic atrophy, and short-term memory loss, without necrosis and/or inflammation in the brain. METHODOLOGY/PRINCIPAL FINDINGS: We employed the Magnetic Resonance Angiography to study the area of the basilar artery in male and female M5R(-/-) mice. Here we show that female M5R(-/-) mice did not show the reduction in vascular area observed in male M5R(-/-) mice. However, ovariectomized female M5R(-/-) mice displayed phenotypic changes similar to male M5R(-/-) mice, strongly suggesting that estrogen plays a key role in the observed gender differences. We found that 17beta-estradiol (E2) induced nitric oxide release and ERK activation in a conditional immortalized mouse brain cerebrovascular endothelial cell line. Agonists of ERalpha, ERbeta, and GPR30 promoted ERK activation in this cell line. Moreover, in vivo magnetic resonance imaging studies showed that the cross section of the basilar artery was restored to normal in male M5R(-/-) mice treated with E2. Treatment with E2 also improved the performance of male M5R(-/-) mice in a cognitive test and reduced the atrophy of neural dendrites in the cerebral cortex and hippocampus. M5R(-/-) mice also showed astrocyte swelling in cortex and hippocampus using the three-dimensional reconstruction of electron microscope images. This phenotype was reversed by E2 treatment, similar to the observed deficits in dendrite morphology and the number of synapses. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that M5R(-/-) mice represent an excellent novel model system to study the beneficial effects of estrogen on cerebrovascular function and cognition. E2 may offer new therapeutic perspectives for the treatment of cerebrovascular insufficiency related memory dysfunction
Complement Factor H-Related Proteins CFHR2 and CFHR5 Represent Novel Ligands for the Infection-Associated CRASP Proteins of Borrelia burgdorferi
Background: One virulence property of Borrelia burgdorferi is its resistance to innate immunity, in particular to complement-mediated killing. Serum-resistant B. burgdorferi express up to five distinct complement regulator-acquiring surface proteins (CRASP) which interact with complement regulator factor H (CFH) and factor H-like protein 1 (FHL1) or factor H-related protein 1 (CFHR1). In the present study we elucidate the role of the infection-associated CRASP-3 and CRASP-5 protein to serve as ligands for additional complement regulatory proteins as well as for complement resistance of B. burgdorferi. Methodology/Principal Findings: To elucidate whether CRASP-5 and CRASP-3 interact with various human proteins, both borrelial proteins were immobilized on magnetic beads. Following incubation with human serum, bound proteins were eluted and separated by Glycine-SDS-PAGE. In addition to CFH and CFHR1, complement regulators CFHR2 and CFHR5 were identified as novel ligands for both borrelial proteins by employing MALDI-TOF. To further assess the contributions of CRASP-3 and CRASP-5 to complement resistance, a serum-sensitive B. garinii strain G1 which lacks all CFH-binding proteins was used as a valuable model for functional analyses. Both CRASPs expressed on the B. garinii outer surface bound CFH as well as CFHR1 and CFHR2 in ELISA. In contrast, live B. garinii bound CFHR1, CFHR2, and CFHR5 and only miniscute amounts of CFH as demonstrated by serum adsorption assays and FACS analyses. Further functional analysis revealed that upon NHS incubation, CRASP-3 or CRASP-5 expressing borreliae were killed by complement. Conclusions/Significance: In the absence of CFH and the presence of CFHR1, CFHR2 and CFHR5, assembly and integration of the membrane attack complex was not efficiently inhibited indicating that CFH in co-operation with CFHR1, CFHR2 and CFHR5 supports complement evasion of B. burgdorferi
Burden of Illness and Quality of Life in Tuberous Sclerosis Complex: Findings From the TOSCA Study
Research on tuberous sclerosis complex (TSC) to date has focused mainly on the physical manifestations of the disease. In contrast, the psychosocial impact of TSC has received far less attention. The aim of this study was therefore to examine the impact of TSC on health, quality of life (QoL), and psychosocial well-being of individuals with TSC and their families. Questionnaires with disease-specific questions on burden of illness (BOI) and validated QoL questionnaires were used. After completion of additional informed consent, we included 143 individuals who participated in the TOSCA (TuberOus SClerosis registry to increase disease Awareness) study. Our results highlighted the substantial burden of TSC on the personal lives of individuals with TSC and their families. Nearly half of the patients experienced negative progress in their education or career due to TSC (42.1%), as well as many of their caregivers (17.6% employed; 58.8% unemployed). Most caregivers (76.5%) indicated that TSC affected family life, and social and working relationships. Further, well-coordinated care was lacking: a smooth transition from pediatric to adult care was mentioned by only 36.8% of adult patients, and financial, social, and psychological support in 21.1, 0, and 7.9%, respectively. In addition, the moderate rates of pain/discomfort (35%) and anxiety/depression (43.4%) reported across all ages and levels of disease demonstrate the high BOI and low QoL in this vulnerable population
Black hole spin: theory and observation
In the standard paradigm, astrophysical black holes can be described solely
by their mass and angular momentum - commonly referred to as `spin' - resulting
from the process of their birth and subsequent growth via accretion. Whilst the
mass has a standard Newtonian interpretation, the spin does not, with the
effect of non-zero spin leaving an indelible imprint on the space-time closest
to the black hole. As a consequence of relativistic frame-dragging, particle
orbits are affected both in terms of stability and precession, which impacts on
the emission characteristics of accreting black holes both stellar mass in
black hole binaries (BHBs) and supermassive in active galactic nuclei (AGN).
Over the last 30 years, techniques have been developed that take into account
these changes to estimate the spin which can then be used to understand the
birth and growth of black holes and potentially the powering of powerful jets.
In this chapter we provide a broad overview of both the theoretical effects of
spin, the means by which it can be estimated and the results of ongoing
campaigns.Comment: 55 pages, 5 figures. Published in: "Astrophysics of Black Holes -
From fundamental aspects to latest developments", Ed. Cosimo Bambi, Springer:
Astrophysics and Space Science Library. Additional corrections mad
A Gene Regulatory Network for Root Epidermis Cell Differentiation in Arabidopsis
The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epidermal cell types, together with fluorescence-activated cell-sorting to preferentially analyze the root epidermis transcriptome, we identified 1,582 genes differentially expressed in the root-hair or non-hair cell types, including a set of 208 “core” root epidermal genes. The organization of the core genes into a network was accomplished by using 17 distinct root epidermis mutants and 2 hormone treatments to perturb the system and assess the effects on each gene's transcript accumulation. In addition, temporal gene expression information from a developmental time series dataset and predicted gene associations derived from a Bayesian modeling approach were used to aid the positioning of genes within the network. Further, a detailed functional analysis of likely bHLH regulatory genes within the network, including MYC1, bHLH54, bHLH66, and bHLH82, showed that three distinct subfamilies of bHLH proteins participate in root epidermis development in a stage-specific manner. The integration of genetic, genomic, and computational analyses provides a new view of the composition, architecture, and logic of the root epidermal transcriptional network, and it demonstrates the utility of a comprehensive systems approach for dissecting a complex regulatory network
Treatment Patterns and Use of Resources in Patients With Tuberous Sclerosis Complex: Insights From the TOSCA Registry
Tuberous Sclerosis Complex (TSC) is a rare autosomal-dominant disorder caused by mutations in the TSC1 or TSC2 genes. Patients with TSC may suffer from a wide range of clinical manifestations; however, the burden of TSC and its impact on healthcare resources needed for its management remain unknown. Besides, the use of resources might vary across countries depending on the country-specific clinical practice. The aim of this paper is to describe the use of TSC-related resources and treatment patterns within the TOSCA registry. A total of 2,214 patients with TSC from 31 countries were enrolled and had a follow-up of up to 5 years. A search was conducted to identify the variables containing both medical and non-medical resource use information within TOSCA. This search was performed both at the level of the core project as well as at the level of the research projects on epilepsy, subependymal giant cell astrocytoma (SEGA), lymphangioleiomyomatosis (LAM), and renal angiomyolipoma (rAML) taking into account the timepoints of the study, age groups, and countries. Data from the quality of life (QoL) research project were analyzed by type of visit and age at enrollment. Treatments varied greatly depending on the clinical manifestation, timepoint in the study, and age groups. GAB Aergics were the most prescribed drugs for epilepsy, and mTOR inhibitors are dramatically replacing surgery in patients with SEGA, despite current recommendations proposing both treatment options. mTOR inhibitors are also becoming common treatments in rAML and LAM patients. Forty-two out of the 143 patients (29.4%) who participated in the QoL research project reported inpatient stays over the last year. Data from non-medical resource use showed the critical impact of TSC on job status and capacity. Disability allowances were more common in children than adults (51.1% vs 38.2%). Psychological counseling, social services and social worker services were needed by <15% of the patients, regardless of age. The long-term nature, together with the variability in its clinical manifestations, makes TSC a complex and resource-demanding disease. The present study shows a comprehensive picture of the resource use implications of TSC
- …
