17 research outputs found

    Genometrics as an essential tool for the assembly of whole genome sequences: the example of the chromosome of Bifidobacterium longum NCC2705

    Get PDF
    BACKGROUND: Analysis of the first reported complete genome sequence of Bifidobacterium longum NCC2705, an actinobacterium colonizing the gastrointestinal tract, uncovered its proteomic relatedness to Streptomyces coelicolor and Mycobacterium tuberculosis. However, a rapid scrutiny by genometric methods revealed a genome organization totally different from all so far sequenced high-GC Gram-positive chromosomes. RESULTS: Generally, the cumulative GC- and ORF orientation skew curves of prokaryotic genomes consist of two linear segments of opposite slope: the minimum and the maximum of the curves correspond to the origin and the terminus of chromosome replication, respectively. However, analyses of the B. longum NCC2705 chromosome yielded six, instead of two, linear segments, while its dnaA locus, usually associated with the origin of replication, was not located at the minimum of the curves. Furthermore, the coorientation of gene transcription with replication was very low. Comparison with closely related actinobacteria strongly suggested that the chromosome of B. longum was misassembled, and the identification of two pairs of relatively long homologous DNA sequences offers the possibility for an alternative genome assembly proposed here below. By genometric criteria, this configuration displays all of the characters common to bacteria, in particular to related high-GC Gram-positives. In addition, it is compatible with the partially sequenced genome of DJO10A B. longum strain. Recently, a corrected sequence of B. longum NCC2705, with a configuration similar to the one proposed here below, has been deposited in GenBank, confirming our predictions. CONCLUSION: Genometric analyses, in conjunction with standard bioinformatic tools and knowledge of bacterial chromosome architecture, represent fast and straightforward methods for the evaluation of chromosome assembly

    Crisis of Identity and Mimicry in Orwell’s Burmese Days Seen through a Local Native Character U Po Kyin: A Postcolonial Reading

    Get PDF
    We demonstrate that the cccB gene, identified in the Bacillus subtilis genome sequence project, is the structural gene for a 10-kDa membrane-bound cytochrome c(551) lipoprotein described for the first time in B. subtilis. Apparently, CccB corresponds to cytochrome c(551) of the thermophilic bacterium Bacillus PS3. The heme domain of B. subtilis cytochrome c(551) is very similar to that of cytochrome c(550), a protein encoded by the cccA gene and anchored to the membrane by a single transmembrane polypeptide segment. Thus, B. subtilis contains two small, very similar, c-type cytochromes with different types of membrane anchors. The cccB gene is cotranscribed with the yvjA gene, and transcription is repressed by glucose. Mutants deleted for cccB or yvjA-cccB show no apparent growth, sporulation, or germination defect. YvjA is not required for the synthesis of cytochrome c(551), and its function remains unknown

    Characterization of a Bacillus subtilis Thermosensitive Teichoic Acid-Deficient Mutant: Gene mnaA (yvyH) Encodes the UDP-N-Acetylglucosamine 2-Epimerase

    No full text
    The Bacillus subtilis thermosensitive mutant ts-21 bears two C-G→T-A transitions in the mnaA gene. At the nonpermissive temperature it is characterized by coccoid cell morphology and reduced cell wall phosphate content. MnaA converts UDP-N-acetylglucosamine into UDP-N-acetylmannosamine, a precursor of the teichoic acid linkage unit

    The lytE Gene of Bacillus subtilis 168 Encodes a Cell Wall Hydrolase

    No full text
    Bacillus subtilis cell wall-bound protein CWBP33 is encoded by lytE, a gene expressed during the exponential growth phase. Sequence analysis of LytE, a 33-kDa protein, reveals two domains. The N-terminal domain contains a threefold-repeated motif common to several peptidoglycan binding proteins, while the C-terminal domain, probably carrying the catalytic activity, has homology with certain exoproteins. Zymographs unambiguously reveal that the absence of CWBP33, due to inactivation of lytE, is accompanied by the loss of a lytic activity. In lytE mutants, the cell autolysis rate is significantly decreased, although autolysis of corresponding, purified cell walls does not seem to be affected

    Comparative Genometrics (CG): a database dedicated to biometric comparisons of whole genomes

    No full text
    The ever increasing rate at which whole genome sequences are becoming accessible to the scientific community has created an urgent need for tools enabling comparison of chromosomes of different species. We have applied biometric methods to available chromosome sequences and posted the results on our Comparative Genometrics (CG) web site. By genometrics, a term coined by Elston and Wilson [Genet. Epidemiol. (1990), 7, 17–19], we understand a biometric analysis of chromosomes. During the initial phase, our web site displays, for all completely sequenced prokaryotic genomes, three genometric analyses: the DNA walk [Lobry (1999) Microbiology Today, 26, 164–165] and two complementary representations, i.e. the cumulative GC- and TA-skew analyses, capable of identifying, at the level of whole genomes, features inherent to chromosome organization and functioning. It appears that the latter features are taxon-specific. Although primarily focused on prokaryotic chromosomes, the CG web site contains genometric information on paradigm plasmids, phages, viruses and eukaryotic organelles. Relevant data and methods can be readily used by the scientific community for further analyses as well as for tutorial purposes. Our data posted at the CG web site are freely available on the World Wide Web at http://www.unil.ch/comparativegenometrics
    corecore