11 research outputs found

    Nanowired three-dimensional cardiac patches

    Get PDF
    Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds1, 2, 3. These biomaterials, which are usually made of either biological polymers such as alginate4 or synthetic polymers such as poly(lactic acid) (PLA)5, help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit6. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.National Institutes of Health (U.S.) (NIH, grant GM073626)National Institutes of Health (U.S.) (NIH, grant DE13023)National Institutes of Health (U.S.) (NIH, grant DE016516)American Heart Association (Postdoctoral Fellowship)National Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award (no. F32GM096546)

    Directed assembly of carbon nanotubes at liquid-liquid interfaces: nanoscale conveyors for interfacial biocatalysis

    No full text
    We report that single-walled carbon nanotubes (SWNTs) can be directed to aqueous−organic interfaces with the aid of surfactants. This phenomenon can also be used to transport enzymes to the interface to effect biphasic biotransformations. Consequently, SWNT−enzyme conjugates enhance the rate of catalysis by up to 3 orders of magnitude relative to the rates obtained with native enzymes in similar biphasic systems. Furthermore, we demonstrate that this concept can be extended to other nanomaterials and other enzymes, thereby providing a general strategy for efficient interfacial biocatalysis. The ability to direct the assembly of nanotubes at the interface also provides an attractive route to organizing these nanomaterials into 2D architectures

    The protein–nanomaterial interface

    No full text
    Developments in the past few years have illustrated the potentially revolutionizing impact of nanomaterials, especially in biomedical imaging, drug delivery, biosensing and the design of functional nanocomposites. Methods to effectively interface proteins with nanomaterials for realizing these applications continue to evolve. Proteins are being used to control both the synthesis and assembly of nanomaterials. There has also been an increasing interest in understanding the influence of nanomaterials on the structure and function of proteins. Understanding and controlling the protein–nanomaterial interface will be crucial for designing functional protein–nanomaterial conjugates and assemblies

    Enhanced stability of enzymes adsorbed onto nanoparticles

    No full text
    We have discovered that the highly curved surface of C60 fullerenes enhances enzyme stability in strongly denaturing environments to a greater extent than flat supports. The half-life of a model enzyme, soybean peroxidase, adsorbed onto fullerenes at 95 °C was 117 min, ca. 2.5-fold higher than that of the enzyme adsorbed onto graphite flakes and ca. 13-fold higher than that of the native enzyme. Furthermore, this phenomenon is not unique to fullerenes, but can also be extended to other nanoscale supports including silica and gold nanoparticles. The enhanced stability was exploited in the preparation of highly active and stable polymer-nanocomposite films. The ability to enhance protein stability by interfacing them with nanomaterials may impact numerous fields ranging from the design of diagnostics, sensors, and nanocomposites to drug delivery

    Protein-assisted solubilization of single-walled carbon nanotubes

    No full text
    We report a simple method that uses proteins to solubilize single-walled carbon nanotubes (SWNTs) in water. Characterization by a variety of complementary techniques including UV−Vis spectroscopy, Raman spectroscopy, and atomic force microscopy confirmed the dispersion at the individual nanotube level. A variety of proteins differing in size and structure were used to generate individual nanotube solutions by this noncovalent functionalization procedure. Protein-mediated solubilization of nanotubes in water may be important for biomedical applications. This method of solubilization may also find use in approaches for controlling the assembly of nanostructures, and the wide variety of functional groups present on the adsorbed proteins may be used as orthogonal reactive handles for the functionalization of carbon nanotubes

    Increasing Protein Stability through Control of the Nanoscale Environment

    No full text
    We have discovered a novel property of single-walled carbon nanotubes (SWNTs)their ability to stabilize proteins at elevated temperatures and in organic solvents to a greater extent than conventional flat supports. Experimental results and theoretical analysis reveal that the stabilization results from the curvature of SWNTs, which suppresses unfavorable protein−protein lateral interactions. Our results also indicate that the phenomenon is not unique to SWNTs but could be extended to other nanomaterials. The protein−nanotube conjugates represent a new generation of active and stable catalytic materials with potential use in biosensors, diagnostics, and bioactive films and other hybrid materials that integrate biotic and abiotic components

    Water soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations

    No full text
    We report the activity, stability, and reusability of enzyme-carbon nanotube conjugates in aqueous solutions. A variety of enzymes were covalently attached to oxidized multi-walled carbon nanotubes (MWNTs). These conjugates were soluble in aqueous buffer, retained a high fraction of their native activity, and were stable at higher temperatures relative to their solution phase counterparts. Furthermore, the high surface area of MWNTs afforded high enzyme loadings, yet the intrinsic high length of the MWNT led to facile filtration. These water-soluble carbon nanotube-enzyme conjugates represent novel preparations that possess the virtues of both soluble and immobilized enzymes, thus providing a unique combination of useful attributes such as low mass transfer resistance, high activity and stability, and reusability

    Protein-Carbon Nanotube Conjugates

    No full text
    Proteins have been conjugated to carbon nanotubes for applications in biosensing, biorecognition, delivery, and functional composites. Despite the growing interest in these carbon nanotube-protein hybrids, very little is known about how carbon nanotubes affect the structure and function of bound proteins. Here we provide an overview of our recent efforts to gain a more fundamental understanding of how proteins interact with carbon nanotubes. We also discuss recent results from our laboratories which suggest several new opportunities for protein-carbon nanotube conjugates to address problems in materials science and biotechnology

    Three-Dimensional Hydrogel Model Using Adipose-Derived Stem Cells for Vocal Fold Augmentation

    No full text
    Adipose-derived stem cells (ASCs) may provide a clinical option for rebuilding damaged superficial lamina propria of the vocal fold. We investigated the effects of five hydrogels (hyaluronic acid [HA], collagen, fibrin, and cogels of fibrin–collagen and fibrin–HA) on the differentiation of ASCs, with the long-term goal of establishing the conditions necessary for controlling the differentiation of ASC into the functional equivalent of superficial lamina propria fibroblasts. Human ASCs were isolated and characterized by fluorescence-activated cell sorting and real-time polymerase chain reaction. According to fluorescence-activated cell sorting and gene analysis, over 90% of isolated ASCs expressed adult stem cell surface markers and expressed adult stem cell genes. Scaffold-specific gene expression and morphology were assessed by culturing the ASCs in three-dimensional hydrogels. Twofold higher amounts of total DNA were detected in fibrin and cogel cultures than in collagen and HA cultures. Elastin expression was significantly higher in cells grown in fibrin-based gels than in cells grown in other gels. Cells grown in the cogels showed elongated morphology, expressed decorin marker, and exhibited glycosaminoglycan synthesis, which indicate ASC differentiation. Our data suggest that it may be possible to control the differentiation of ASCs using scaffolds appropriate for vocal fold tissue engineering applications. In particular, cogels of HA or collagen with fibrin enhanced proliferation, differentiation, and elastin expression.Eugene B. Casey FoundationInstitute of Laryngology and Voice Restoratio

    Functionalizable hydrogel microparticles of tunable size and stiffness for soft-tissue filler applications

    No full text
    Particle size, stiffness and surface functionality are important in determining the injection site, safety and efficacy of injectable soft-tissue fillers. Methods to produce soft injectable biomaterials with controlled particle characteristics are therefore desirable. Here we report a method based on suspension photopolymerization and semi-interpenetrating network (semi-IPN) to synthesize soft, functionalizable, spherical hydrogel microparticles (MP) of independently tunable size and stiffness. MP were prepared using acrylated forms of polyethylene glycol (PEG), gelatin and hyaluronic acid. Semi-IPN MP of PEG-diacrylate and PEG were used to study the effect of process parameters on particle characteristics. The process parameters were systematically varied to produce MP with size ranging from 115 to 515 Όm and stiffness ranging from 190 to 1600 Pa. In vitro studies showed that the MP thus prepared were cytocompatible. The ratio and identity of the polymers used to make the semi-IPN MP were varied to control their stiffness and to introduce amine groups for potential functionalization. Slow-release polymeric particles loaded with Rhodamine or dexamethasone were incorporated in the MP as a proof-of-principle of drug incorporation and release from the MP. This work has implications in preparing injectable biomaterials of natural or synthetic polymers for applications as soft-tissue fillers. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved
    corecore