28 research outputs found

    Therapeutic effect of orally administered microencapsulated oxaliplatin for colorectal cancer

    Get PDF
    Colorectal cancer is a significant source of morbidity and mortality in the United States and other Western countries. Oral delivery of therapeutics remains the most patient accepted form of medication. The development of an oral delivery formulation for local delivery of chemotherapeutics in the gastrointestinal tract can potentially alleviate the adverse side effects including systemic cytotoxicity, as well as focus therapy to the lesions. Here we develop an oral formulation of the chemotherapeutic drug oxaliplatin for the treatment of colorectal cancer. Oxaliplatin was encapsulated in pH sensitive, mucoadhesive chitosan-coated alginate microspheres. The microparticles were formulated to release the chemotherapeutics after passing through the acidic gastric environment thus targeting the intestinal tract. In vivo, these particles substantially reduced the tumor burden in an orthotopic mouse model of colorectal cancer, and reduced mortality.Natural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship)National Institutes of Health (U.S.)Alnylam Pharmaceuticals (Firm

    The influence of scaffold elasticity on germ layer specification of human embryonic stem cells

    Get PDF
    Mechanical forces are critical to embryogenesis, specifically, in the lineage-specification gastrulation phase, whereupon the embryo is transformed from a simple spherical ball of cells to a multi-layered organism, containing properly organized endoderm, mesoderm, and ectoderm germ layers. Several reports have proposed that such directed and coordinated movements of large cell collectives are driven by cellular responses to cell deformations and cell-generated forces. To better understand these environmental-induced cell changes, we have modeled the germ layer formation process by culturing human embryonic stem cells (hESCs) on three dimensional (3D) scaffolds with stiffness engineered to model that found in specific germ layers. We show that differentiation to each germ layer was promoted by a different stiffness threshold of the scaffolds, reminiscent of the forces exerted during the gastrulation process. The overall results suggest that three dimensional (3D) scaffolds can recapitulate the mechanical stimuli required for directing hESC differentiation and that these stimuli can play a significant role in determining hESC fate.Israel Science Foundation. F.I.R.S.T. ProgramNational Institutes of Health (U.S.) (Grant DE-016516)National Institutes of Health (U.S.) (Grant HL-060435

    Directing human embryonic stem cell differentiation by non-viral delivery of siRNA in 3D culture

    Get PDF
    Human embryonic stem cells (hESCs) hold great potential as a resource for regenerative medicine. Before achieving therapeutic relevancy, methods must be developed to control stem cell differentiation. It is clear that stem cells can respond to genetic signals, such as those imparted by nucleic acids, to promote lineage-specific differentiation. Here we have developed an efficient system for delivering siRNA to hESCs in a 3D culture matrix using lipid-like materials. We show that non-viral siRNA delivery in a 3D scaffolds can efficiently knockdown 90% of GFP expression in GFP-hESCs. We further show that this system can be used as a platform for directing hESC differentiation. Through siRNA silencing of the KDR receptor gene, we achieve concurrent downregulation (60–90%) in genes representative of the endoderm germ layer and significant upregulation of genes representative of the mesoderm germ layer (27–90 fold). This demonstrates that siRNA can direct stem cell differentiation by blocking genes representative of one germ layer and also provides a particularly powerful means to isolate the endoderm germ layer from the mesoderm and ectoderm. This ability to inhibit endoderm germ layer differentiation could allow for improved control over hESC differentiation to desired cell types.National Institutes of Health (U.S.) (Grant EB000244)National Institutes of Health (U.S.) (Grant DE016561)Alnylam Pharmaceuticals (Firm

    Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions <it>in vitro </it>in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays.</p> <p>Methods</p> <p>One family of peptides with high activity is derived from the α-fibrils of type IV collagen. Based on the results from the <it>in vitro </it>screening, we have evaluated the ability of a 20 amino acid peptide derived from the α5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed <it>in vivo </it>angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line.</p> <p>Results</p> <p>Pentastatin-1 decreased the invasion of vessels into angioreactors <it>in vivo </it>in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density <it>in vivo </it>in a small cell lung cancer xenograft model.</p> <p>Conclusions</p> <p>The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer.</p

    RAPP: A Robotic-Oriented Ecosystem for Delivering Smart User Empowering Applications for Older People

    Get PDF
    International audienceIt is a general truth that increase of age is associated with a level of mental and physical decline but unfortunately the former are often accompanied by social exclusion leading to marginalization and eventually further acceleration of the aging process. A new approach in alleviating the social exclusion of older people involves the use of assistive robots. As robots rapidly invade everyday life, the need of new software paradigms in order to address the user's unique needs becomes critical. In this paper we present a novel architectural design, the RAPP [a software platform to deliver smart, user empowering robotic applications (RApps)] framework that attempts to address this issue. The proposed framework has been designed in a cloud-based approach, integrating robotic devices and their respective applications. We aim to facilitate seamless development of RApps compatible with a wide range of supported robots and available to the public through a unified online store

    Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling

    Get PDF
    Despite substantial efforts to understand the interactions between nanoparticles and cells, the cellular processes that determine the efficiency of intracellular drug delivery remain largely unclear. Here we examined cellular uptake of siRNA delivered in lipid nanoparticles (LNPs) using cellular trafficking probes in combination with automated high-throughput confocal microscopy as well as defined perturbations of cellular pathways paired with systems biology approaches to uncover protein-protein and protein-small molecule interactions. We show that multiple cell signaling effectors are required for initial cellular entry of LNPs through macropinocytosis, including proton pumps, mTOR, and cathepsins. SiRNA delivery is substantially reduced as ≅70% of the internalized siRNA undergoes exocytosis through egress of LNPs from late endosomes/lysosomes. Niemann Pick type C1 (NPC1) is shown to be an important regulator of the major recycling pathways of LNP-delivered siRNAs. NPC1-deficient cells show enhanced cellular retention of LNPs inside late endosomes/lysosomes and increased gene silencing of the target gene. Our data suggests that siRNA delivery efficiency might be improved by designing delivery vehicles that can escape the recycling pathways

    Variable structure robot control systems: The RAPP approach

    Get PDF
    International audienceThis paper presents a method of designing variable structure control systems for robots. As the on-board robot computational resources are limited, but in some cases the demands imposed on the robot by the user are virtually limitless, the solution is to produce a variable structure system. The task dependent part has to be exchanged, however the task governs the activities of the robot. Thus not only exchange of some task-dependent modules is required, but also supervisory responsibilities have to be switched. Such control systems are necessary in the case of robot companions, where the owner of the robot may demand from it to provide many services.

    A systematic methodology for genome-wide identification of antiangiogenic peptides

    No full text
    Matrix metalloproteinases (MMPs) are a family of enzymes responsible for the proteolytic processing of extracellular matrix (ECM) structural proteins under physiological and pathological conditions. During sprouting angiogenesis, the MMPs expressed by a single endothelial "tip" cell exhibit proteolytic activity that allows the cells of the sprouting vessel to migrate into the ECM. Membrane type I matrix metalloproteinase (MT1-MMP) and the diffusible matrix metalloproteinase MMP2, and MMP9 in the presence of the tissue inhibitors of metalloproteinases TIMP1, TIMP2 and TIMP3, constitute a system of proteins that play an important role during the proteolysis of extracellular matrices. We have formulated biochemical models describing the activation and inhibition of the MMPs as well as the proteolysis of collagenous components. We have applied the biochemical model of MMP2, MT1-MMP and TIMP2 in a geometrically detailed model describing the migration of a single cell into a three dimensional collagen I matrix. An important proteolytic product of various ECM as well as circulating proteins are cryptic peptide fragments that modulate angiogenesis, they are inhibitors of angiogenesis. We introduced a systematic computational methodology based on bioinformatics that has enabled us to identify and classify over 120 novel endogenous peptide inhibitors of angiogenesis. The novel peptides are derived from members of the type IV collagen, thrombospondin, and CXC chemokine protein families, as well as coagulation factors, receptor tyrosine kinase-like orphan receptors, and various kringle-containing proteins. Their activity in suppressing the proliferation and migration of endothelial cells in vitro provided proof of principle for the validity of this computational method. Some of the novel peptides are derived from proteins known to be proangiogenic. By performing receptor neutralization studies, we have identified receptors to which these novel peptides bind. On the basis of this receptor binding information, we evaluated several examples of peptide-based combinatorial therapeutic strategies. In some cases, this combinatorial screening identified strong synergism. The peptides both as monotherapy and in combinations effectively arrest the tumor growth in a highly aggressive lung carcinoma xenograft model as well as inhibit neovascularization in corneal and choroidal angiogenesis models

    Expansion microscopy: development and neuroscience applications

    No full text
    © 2017 Elsevier Ltd Many neuroscience questions center around understanding how the molecules and wiring in neural circuits mechanistically yield behavioral functions, or go awry in disease states. However, mapping the molecules and wiring of neurons across the large scales of neural circuits has posed a great challenge. We recently developed expansion microscopy (ExM), a process in which we physically magnify biological specimens such as brain circuits. We synthesize throughout preserved brain specimens a dense, even mesh of a swellable polymer such as sodium polyacrylate, anchoring key biomolecules such as proteins and nucleic acids to the polymer. After mechanical homogenization of the specimen-polymer composite, we add water, and the polymer swells, pulling biomolecules apart. Due to the larger separation between molecules, ordinary microscopes can then perform nanoscale resolution imaging. We here review the ExM technology as well as applications to the mapping of synapses, cells, and circuits, including deployment in species such as Drosophila, mouse, non-human primate, and human
    corecore