9 research outputs found

    Pediatric Cushing disease: disparities in disease severity and outcomes in the Hispanic and African-American populations.

    Get PDF
    BackgroundLittle is known about the contribution of racial and socioeconomic disparities to severity and outcomes in children with Cushing disease (CD).MethodsA total of 129 children with CD, 45 Hispanic/Latino or African-American (HI/AA) and 84 non-Hispanic White (non-HW), were included in this study. A 10-point index for rating severity (CD severity) incorporated the degree of hypercortisolemia, glucose tolerance, hypertension, anthropomorphic measurements, disease duration, and tumor characteristics. Race, ethnicity, age, gender, local obesity prevalence, estimated median income, and access to care were assessed in regression analyses of CD severity.ResultsThe mean CD severity in the HI/AA group was worse than that in the non-HW group (4.9±2.0 vs. 4.1±1.9, P=0.023); driving factors included higher cortisol levels and larger tumor size. Multiple regression models confirmed that race (P=0.027) and older age (P=0.014) were the most important predictors of worse CD severity. When followed up a median of 2.3 years after surgery, the relative risk for persistent CD combined with recurrence was 2.8 times higher in the HI/AA group compared with that in the non-HW group (95% confidence interval: 1.2-6.5).ConclusionOur data show that the driving forces for the discrepancy in severity of CD are older age and race/ethnicity. Importantly, the risk for persistent and recurrent CD was higher in minority children

    Germline PRKACA amplification causes variable phenotypes that may depend on the extent of the genomic defect:molecular mechanisms and clinical presentations

    No full text
    OBJECTIVE: We reported recently 5 patients with bilateral adrenocortical hyperplasia (BAH) and Cushing syndrome (CS) caused by constitutive activation of the catalytic subunit of protein kinase A (PRKACA). By doing new, in depth analysis of their cytogenetic abnormality, we attempt a better genotype-phenotype correlation of their PRKACA amplification. DESIGN: Case series. METHODS: Molecular cytogenetic, genomic, clinical and histopathologic analyses were performed in 5 patients with CS. RESULTS: Reinvestigation of the defects of previously described patients by state-of-the-art molecular cytogenetics showed complex genomic rearrangements in the chromosome 19p13.2p13.12 locus resulting in copy number gains encompassing the entire PRKACA; three patients (one sporadic case and two related cases) were observed with gains consistent with duplications, while two sporadic patients were observed with gains consistent with triplications. Although all five patients presented with ACTH-independent CS, the three sporadic patients had micronodular BAH and underwent bilateral adrenalectomy in early childhood whereas the two related patients, a mother and a son, presented with macronodular BAH as adults. In at least one patient, PRKACA triplication was associated with a more severe phenotype. CONCLUSIONS: Constitutional chromosomal PRKACA amplification is a recently identified genetic defect associated with CS, a trait that may be inherited in an autosomal dominant manner or occur de novo. Genomic rearrangements can be complex and can result in different copy number states of dosage sensitive genes; e.g. duplication and triplication. PRKACA amplification can lead to variable phenotypes clinically and pathologically, and both micro- and macro-nodular BAH, the latter of which we speculate may depend on the extent of amplification

    Germline PRKACA amplification causes variable phenotypes that may depend on the extent of the genomic defect: molecular mechanisms and clinical presentations

    No full text
    OBJECTIVE: We reported recently 5 patients with bilateral adrenocortical hyperplasia (BAH) and Cushing syndrome (CS) caused by constitutive activation of the catalytic subunit of protein kinase A (PRKACA). By doing new, in depth analysis of their cytogenetic abnormality, we attempt a better genotype-phenotype correlation of their PRKACA amplification. DESIGN: Case series. METHODS: Molecular cytogenetic, genomic, clinical and histopathologic analyses were performed in 5 patients with CS. RESULTS: Reinvestigation of the defects of previously described patients by state-of-the-art molecular cytogenetics showed complex genomic rearrangements in the chromosome 19p13.2p13.12 locus resulting in copy number gains encompassing the entire PRKACA; three patients (one sporadic case and two related cases) were observed with gains consistent with duplications, while two sporadic patients were observed with gains consistent with triplications. Although all five patients presented with ACTH-independent CS, the three sporadic patients had micronodular BAH and underwent bilateral adrenalectomy in early childhood whereas the two related patients, a mother and a son, presented with macronodular BAH as adults. In at least one patient, PRKACA triplication was associated with a more severe phenotype. CONCLUSIONS: Constitutional chromosomal PRKACA amplification is a recently identified genetic defect associated with CS, a trait that may be inherited in an autosomal dominant manner or occur de novo. Genomic rearrangements can be complex and can result in different copy number states of dosage sensitive genes; e.g. duplication and triplication. PRKACA amplification can lead to variable phenotypes clinically and pathologically, and both micro- and macro-nodular BAH, the latter of which we speculate may depend on the extent of amplification

    G protein-coupled receptors: structure- and function-based drug discovery

    No full text
    corecore