2 research outputs found

    MorphoArms: Morphogenetic Teleoperation of Multimanual Robot

    Full text link
    Nowadays, there are few unmanned aerial vehicles (UAVs) capable of flying, walking and grasping. A drone with all these functionalities can significantly improve its performance in complex tasks such as monitoring and exploring different types of terrain, and rescue operations. This paper presents MorphoArms, a novel system that consists of a morphogenetic chassis and a hand gesture recognition teleoperation system. The mechanics, electronics, control architecture, and walking behavior of the morphogenetic chassis are described. This robot is capable of walking and grasping objects using four robotic limbs. Robotic limbs with four degrees-of-freedom are used as pedipulators when walking and as manipulators when performing actions in the environment. The robot control system is implemented using teleoperation, where commands are given by hand gestures. A motion capture system is used to track the user's hands and to recognize their gestures. The method of controlling the robot was experimentally tested in a study involving 10 users. The evaluation included three questionnaires (NASA TLX, SUS, and UEQ). The results showed that the proposed system was more user-friendly than 56% of the systems, and it was rated above average in terms of attractiveness, stimulation, and novelty.Comment: IEEE International Conference on Automation Science and Engineering (CASE 2023), Cordis, New Zeland, 26-30 August, 2023, in prin

    MorphoLander: Reinforcement Learning Based Landing of a Group of Drones on the Adaptive Morphogenetic UAV

    Full text link
    This paper focuses on a novel robotic system MorphoLander representing heterogeneous swarm of drones for exploring rough terrain environments. The morphogenetic leader drone is capable of landing on uneven terrain, traversing it, and maintaining horizontal position to deploy smaller drones for extensive area exploration. After completing their tasks, these drones return and land back on the landing pads of MorphoGear. The reinforcement learning algorithm was developed for a precise landing of drones on the leader robot that either remains static during their mission or relocates to the new position. Several experiments were conducted to evaluate the performance of the developed landing algorithm under both even and uneven terrain conditions. The experiments revealed that the proposed system results in high landing accuracy of 0.5 cm when landing on the leader drone under even terrain conditions and 2.35 cm under uneven terrain conditions. MorphoLander has the potential to significantly enhance the efficiency of the industrial inspections, seismic surveys, and rescue missions in highly cluttered and unstructured environments.Comment: Accepted paper at the 2023 IEEE Conference on Systems, Man, and Cybernetic
    corecore