MorphoArms: Morphogenetic Teleoperation of Multimanual Robot

Abstract

Nowadays, there are few unmanned aerial vehicles (UAVs) capable of flying, walking and grasping. A drone with all these functionalities can significantly improve its performance in complex tasks such as monitoring and exploring different types of terrain, and rescue operations. This paper presents MorphoArms, a novel system that consists of a morphogenetic chassis and a hand gesture recognition teleoperation system. The mechanics, electronics, control architecture, and walking behavior of the morphogenetic chassis are described. This robot is capable of walking and grasping objects using four robotic limbs. Robotic limbs with four degrees-of-freedom are used as pedipulators when walking and as manipulators when performing actions in the environment. The robot control system is implemented using teleoperation, where commands are given by hand gestures. A motion capture system is used to track the user's hands and to recognize their gestures. The method of controlling the robot was experimentally tested in a study involving 10 users. The evaluation included three questionnaires (NASA TLX, SUS, and UEQ). The results showed that the proposed system was more user-friendly than 56% of the systems, and it was rated above average in terms of attractiveness, stimulation, and novelty.Comment: IEEE International Conference on Automation Science and Engineering (CASE 2023), Cordis, New Zeland, 26-30 August, 2023, in prin

    Similar works

    Full text

    thumbnail-image

    Available Versions