12 research outputs found
A Holistic Investigation on Terahertz Propagation and Channel Modeling Toward Vertical Heterogeneous Networks
User-centric and low latency communications can be enabled not only by small
cells but also through ubiquitous connectivity. Recently, the vertical
heterogeneous network (V-HetNet) architecture is proposed to backhaul/fronthaul
a large number of small cells. Like an orchestra, the V-HetNet is a polyphony
of different communication ensembles, including geostationary orbit (GEO), and
low-earth orbit (LEO) satellites (e.g., CubeSats), and networked flying
platforms (NFPs) along with terrestrial communication links. In this study, we
propose the Terahertz (THz) communications to enable the elements of V-HetNets
to function in harmony. As THz links offer a large bandwidth, leading to
ultra-high data rates, it is suitable for backhauling and fronthauling small
cells. Furthermore, THz communications can support numerous applications from
inter-satellite links to in-vivo nanonetworks. However, to savor this harmony,
we need accurate channel models. In this paper, the insights obtained through
our measurement campaigns are highlighted, to reveal the true potential of THz
communications in V-HetNets.Comment: It has been accepted for the publication in IEEE Communications
Magazin
Reconfigurable Intelligent Surfaces in Action for Non-Terrestrial Networks
Next-generation communication technology will be fueled on the cooperation of
terrestrial networks with nonterrestrial networks (NTNs) that contain
mega-constellations of high-altitude platform stations and low-Earth orbit
satellites. On the other hand, humanity has embarked on a long road to
establish new habitats on other planets. This deems the cooperation of NTNs
with deep space networks (DSNs) necessary. In this regard, we propose the use
of reconfigurable intelligent surfaces (RISs) to improve and escalate this
collaboration owing to the fact that they perfectly match with the size,
weight, and power restrictions of the operational environment of space. A
comprehensive framework of RIS-assisted non-terrestrial and interplanetary
communications is presented by pinpointing challenges, use cases, and open
issues. Furthermore, the performance of RIS-assisted NTNs under environmental
effects such as solar scintillation and satellite drag is discussed through
simulation results.Comment: 7 pages, 6 figure
Modeling and Analysis of sub-Terahertz Communication Channel via Mixture of Gamma Distribution
With the recent developments on opening the terahertz (THz) spectrum for
experimental purposes by the Federal Communications Commission, transceivers
operating in the range of 0.1THz-10THz, which are known as THz bands, will
enable ultra-high throughput wireless communications. However, actual
implementation of the high-speed and high-reliability THz band communication
systems should start with providing extensive knowledge in regards to the
propagation channel characteristics. Considering the huge bandwidth and the
rapid changes in the characteristics of THz wireless channels, ray tracing and
one-shot statistical modeling are not adequate to define an accurate channel
model. In this work, we propose Gamma mixture-based channel modeling for the
THz band via the expectation-maximization (EM) algorithm. First, maximum
likelihood estimation (MLE) is applied to characterize the Gamma mixture model
parameters, and then EM algorithm is used to compute MLEs of the unknown
parameters of the measurement data. The accuracy of the proposed model is
investigated by using the Weighted relative mean difference (WMRD) error
metrics, Kullback-Leibler (KL)-divergence, and Kolmogorov-Smirnov test to show
the difference between the proposed model and the actual probability density
functions (PDFs) that are obtained via the designed test environment. According
to WMRD error metrics, KL-divergence, and KS test results, PDFs generated by
the mixture of Gamma distributions fit the actual histogram of the measurement
data. It is shown that instead of taking pseudo-average characteristics of
sub-bands in the wideband, using the mixture models allows for determining
channel parameters more precisely.Comment: This paper has been accepted for publication in IEEE Transactions on
Vehicular Technolog
Channel Estimation for Full-Duplex RIS-assisted HAPS Backhauling with Graph Attention Networks
In this paper, graph attention network (GAT) is firstly utilized for the
channel estimation. In accordance with the 6G expectations, we consider a
high-altitude platform station (HAPS) mounted reconfigurable intelligent
surface-assisted two-way communications and obtain a low overhead and a high
normalized mean square error performance. The performance of the proposed
method is investigated on the two-way backhauling link over the RIS-integrated
HAPS. The simulation results denote that the GAT estimator overperforms the
least square in full-duplex channel estimation. Contrary to the previously
introduced methods, GAT at one of the nodes can separately estimate the
cascaded channel coefficients. Thus, there is no need to use time-division
duplex mode during pilot signaling in full-duplex communication. Moreover, it
is shown that the GAT estimator is robust to hardware imperfections and changes
in small-scale fading characteristics even if the training data do not include
all these variations.Comment: This paper has been accepted for the presentation in IEEE ICC'202
Spectrum Sensing and Signal Identification with Deep Learning based on Spectral Correlation Function
Spectrum sensing is one of the means of utilizing the scarce source of
wireless spectrum efficiently. In this paper, a convolutional neural network
(CNN) model employing spectral correlation function which is an effective
characterization of cyclostationarity property, is proposed for wireless
spectrum sensing and signal identification. The proposed method classifies
wireless signals without a priori information and it is implemented in two
different settings entitled CASE1 and CASE2. In CASE1, signals are jointly
sensed and classified. In CASE2, sensing and classification are conducted in a
sequential manner. In contrary to the classical spectrum sensing techniques,
the proposed CNN method does not require a statistical decision process and
does not need to know the distinct features of signals beforehand.
Implementation of the method on the measured overthe-air real-world signals in
cellular bands indicates important performance gains when compared to the
signal classifying deep learning networks available in the literature and
against classical sensing methods. Even though the implementation herein is
over cellular signals, the proposed approach can be extended to the detection
and classification of any signal that exhibits cyclostationary features.
Finally, the measurement-based dataset which is utilized to validate the method
is shared for the purposes of reproduction of the results and further research
and development
Statistical channel modeling for short range line-of-sight terahertz communication
Underutilized spectrum constitutes a major concern in wireless communications especially in the presence of legacy systems and the prolific need for high-capacity applications as well as consumer expectations. From this perspective, Terahertz frequencies provide a new paradigm shift in wireless communications since they have been left unexplored until recently. Such a vast frequency spectrum region extending all the way up to visible light and beyond points out significant opportunities from dramatic data rates on the order of tens of Gbps to a variety of inherent security and privacy mechanisms, and techniques that are not available in the traditional systems. Thus, in this paper, we investigate statistical parameters for short-range line- of-sight channels of Terahertz communication. Short-range measurement campaign within the interval of [3cm, 20cm] are carried out between 275GHz to 325GHz range. Path loss model is examined for different frequencies and distances to provide the insight regarding the effect of the operating frequency. Measurement results are provided with relevant discussions and future directions
Serum fetuin-A and RANKL levels in patients with early stage breast cancer
Background: Breast cancer (BC) is the primary cause of mortality due to cancer in females around the world. Fetuin-A is known to increase metastases over signals and peroxisomes related with growing. Receptor activator of nuclear factor-kB ligand (RANKL) takes part in cell adhesion, and RANKL inhibition is used in the management of cancer. We aimed to examine the relationship between serum fetuin-A, RANKL levels, other laboratory parameters and clinical findings in women diagnosed with early stage BC, in our population. Methods: Women having early stage BC (n=117) met our study inclusion criteria as they had no any anti-cancer therapy before. Thirty-seven healthy women controls were also confirmed with breast examination and ultrasonography and/or mammography according to their ages. Serum samples were stored at -80 °C and analysed via ELISA. Results: Median age of the patients was 53 (range: 57-86) while it was 47 (range: 23-74) in the healthy group. Patients had lower high-density lipoprotein levels (p=0.002) and higher neutrophil counts (p=0.014). Fetuin-A and RANKL levels did not differ between the groups (p=0.116 and p=0.439, respectively) but RANKL leves were found to be lower in the favorable histological subtypes (p=0.04). Conclusions: In this study, we found no correlation between serum fetuin-A levels and clinical findings in patients diagnosed with early stage BC. However, RANKL levels are found to be lower in subgroups with favorable histopathologic subtypes such as tubular, papillary and mucinous BC and there was statistically significant difference
Le savant et son époque à travers sa correspondance Seeger A. Bonebakker (1923-2005) et quelques notes sur Ḫalīl b. Aybak al-Ṣafadī (696-764/1297-1363)
This article proposes a survey of two great scholars’ in Arabic literature correspondences:
a European of the 20th century, Seeger Adrianus Bonebakker, who is of
special interest for us because he bequeathed all of his great library, personal notes and
correspondence to Università Ca’ Foscari, and a subject of study of the former, Ḫalīl b.
Aybak al-Ṣafadī, great littérateur and scholar of the first century of the Mamluk period.
Letters sent and received are preserved in both cases and are primary sources on their
network, but also on their personal life, personality and methodology
Circadian Rhythms Characteristics of Nurses Providing Direct Patient Care: An Observational Study
Background: In today's modern world, longer working hours, shift work, and working at night have become major causes of the disruption of our natural circadian rhythms. This study aimed to investigate the effects of the type of shift work (rotating vs. fixed day), duty period (on-duty vs. off-duty), and working period within each shift (nighttime vs. daytime) on the circadian rhythm characteristics of nurses who provide direct patient care. Methods: This cross-sectional study used a purposive sampling method. Cosinor analysis was applied to analyze the actigraphy data of nurses providing direct patient care for seven consecutive days. The linear mixed effects model was then used to determine any variances between shift type, duty period, and working period within each shift for the nurses. Results: The mesor value did not differ according to nurses' shift type, duty period, and working period within each shift. The amplitude was statistically higher in on-duty nurses and in daytime working hours. The acrophase was significantly delayed in nighttime working hours. As well as nurses in rotating shift had experience. Conclusion: Our findings revealed that the peak activity of nurses occurs significantly later at night while working and nurses working during nighttime hours may have a weaker or less distinct circadian rhythm. Thus, this study suggests that limits be placed on the number of rotating nighttime shifts for nurses
Graph Attention Networks for Channel Estimation in RIS-assisted Satellite IoT Communications
Direct-to-satellite (DtS) communication has gained importance recently to
support globally connected Internet of things (IoT) networks. However,
relatively long distances of densely deployed satellite networks around the
Earth cause a high path loss. In addition, since high complexity operations
such as beamforming, tracking and equalization have to be performed in IoT
devices partially, both the hardware complexity and the need for high-capacity
batteries of IoT devices increase. The reconfigurable intelligent surfaces
(RISs) have the potential to increase the energy-efficiency and to perform
complex signal processing over the transmission environment instead of IoT
devices. But, RISs need the information of the cascaded channel in order to
change the phase of the incident signal. This study evaluates the pilot signal
as a graph and incorporates this information into the graph attention networks
(GATs) to track the phase relation through pilot signaling. The proposed
GAT-based channel estimation method examines the performance of the DtS IoT
networks for different RIS configurations to solve the challenging channel
estimation problem. It is shown that the proposed GAT both demonstrates a
higher performance with increased robustness under changing conditions and has
lower computational complexity compared to conventional deep learning methods.
Moreover, bit error rate performance is investigated for RIS designs with
discrete and non-uniform phase shifts under channel estimation based on the
proposed method. One of the findings in this study is that the channel models
of the operating environment and the performance of the channel estimation
method must be considered during RIS design to exploit performance improvement
as far as possible.Comment: 11 pages, 13 figure