3 research outputs found

    A hyperfine look at titanium dioxide

    Get PDF
    Titanium dioxide is a commonly used material in a wide range of applications, due to its low price, and the increasing demand for it in the food- and pharmaceutical industries, and for low- and high-tech applications. Time-differential perturbed angular correlation (TDPAC) and Mössbauer spectroscopy measurements have a local character and can provide important and new information on the hyperfine interactions in titanium dioxide. With the application of characterization techniques and radioactive beams, these methods have become very powerful, especially for the determination of temperature dependence of hyperfine parameters, even at elevated temperatures. Such measurements lead to a better understanding of lattice defects and irregularities, including local environments with low fractions of particular defect configurations that affect electric quadrupole interactions. At ISOLDE-CERN, physicists benefit from the many beams available for the investigation of new doping configurations in titanium dioxide. We report the annealing study of titanium dioxide by means of the time differential perturbed γ-γ angular correlation of 111mCd/111Cd in order to study the possible effects of vacancies in hyperfine parameters. This paper also provides an overview of TDPAC measurements and gives future perspectives

    Page 80

    Get PDF
    Work of numerous research groups has shown different outcomes of studies of the transition from the ferroelectric α-phase to the high temperature β-phase of the multiferroic, magnetoelectric perovskite Bismuth Ferrite (BiFeO3 or BFO). Using the perturbed angular correlation (PAC) method with 111mCd as the probe nucleus, the α to β phase transition was characterized. The phase transition temperature, the change of the crystal structure, and its parameters were supervised with measurements at different temperatures using a six detector PAC setup to observe the γ−γ decay of the 111mCd probe nucleus. The temperature dependence of the hyperfine parameters shows a change in coordination of the probe ion, which substitutes for the bismuth site, forecasting the phase transition to β-BFO by either increasing disorder or formation of a polytype transition structure. A visible drop of the quadrupole frequency ω0 at a temperature of about Tc≈820∘C indicates the α−β phase transition. For a given crystal symmetry, the DFT-calculations yield a specific local symmetry and electric field gradient value of the probe ion. The Pbnm (β-BFO) crystal symmetry yields calculated local electric field gradients, which very well match our experimental results. The assumption of other crystal symmetries results in significantly different computed local environments not corresponding to the experiment
    corecore