63 research outputs found

    Dark matter effective field theory scattering in direct detection experiments

    Get PDF
    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.National Science Foundation (U.S.)United States. Dept. of EnergyNatural Sciences and Engineering Research Council of CanadaSpain. Ministerio de Economia y Competitividad (MultiDark

    New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment

    Get PDF
    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg day, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded for WIMP masses between 1.6 and 5.5  GeV/c[superscript 2].National Science Foundation (U.S.)United States. Dept. of EnergyFermi National Accelerator Laboratory (Visiting Scholar Award 13-S-04

    Improved WIMP-search reach of the CDMS II germanium data

    Get PDF
    CDMS II data from the five-tower runs at the Soudan Underground Laboratory were reprocessed with an improved charge-pulse fitting algorithm. Two new analysis techniques to reject surface-event backgrounds were applied to the 612 kg days germanium-detector weakly interacting massive particle (WIMP)-search exposure. An extended analysis was also completed by decreasing the 10 keV analysis threshold to ~5  keV, to increase sensitivity near a WIMP mass of 8  GeV/c[superscript 2]. After unblinding, there were zero candidate events above a deposited energy of 10 keV and six events in the lower-threshold analysis. This yielded minimum WIMP-nucleon spin-independent scattering cross-section limits of 1.8 × 10[superscript −44] and 1.18 × 10[superscript −41] at 90% confidence for 60 and 8.6  GeV/c[superscript 2] WIMPs, respectively. This improves the previous CDMS II result by a factor of 2.4 (2.7) for 60 (8.6)  GeV/c[superscript 2] WIMPs.National Science Foundation (U.S.)United States. Dept. of EnergyNatural Sciences and Engineering Research Council of CanadaSpain. Ministerio de Economia y Competitividad (MultiDark

    Complications Associated with Parenteral Nutrition in the Neonate

    No full text
    Although parenteral nutrition (PN) is life-sustaining, it is associated with many complications including parenteral nutrition-associated liver disease (PNALD) and central line-associated bloodstream infections (CLASBIs), which carry a high morbidity and mortality and impose a burden on the health care system. Evidence has emerged that the dose and composition of intravenous lipid products may alter the incidence of PNALD. However, other patient and PN-related factors, such as prematurity, birth weight, and gastrointestinal anatomy and function, are important. To improve neonatal care, future research on optimizing the content of PN and decreasing the incidence IFALD and CLASBIs is required
    • …
    corecore