15,434 research outputs found
Annealing stability of magnetic tunnel junctions based on dual MgO free layers and [Co/Ni] based thin synthetic antiferromagnet fixed system
We study the annealing stability of bottom-pinned perpendicularly magnetized
magnetic tunnel junctions based on dual MgO free layers and thin fixed systems
comprising a hard [Co/Ni] multilayer antiferromagnetically coupled to thin a Co
reference layer and a FeCoB polarizing layer. Using conventional magnetometry
and advanced broadband ferromagnetic resonance, we identify the properties of
each sub-unit of the magnetic tunnel junction and demonstrate that this
material option can ensure a satisfactory resilience to the 400C
thermal annealing needed in solid-state magnetic memory applications. The dual
MgO free layer possesses an anneal-robust 0.4 T effective anisotropy and
suffers only a minor increase of its Gilbert damping from 0.007 to 0.010 for
the toughest annealing conditions. Within the fixed system, the ferro-coupler
and texture-breaking TaFeCoB layer keeps an interlayer exchange above 0.8
mJ/m, while the Ru antiferrocoupler layer within the synthetic
antiferromagnet maintains a coupling above -0.5 mJ/m. These two strong
couplings maintain the overall functionality of the tunnel junction upon the
toughest annealing despite the gradual degradation of the thin Co layer
anisotropy that may reduce the operation margin in spin torque memory
applications. Based on these findings, we propose further optimization routes
for the next generation magnetic tunnel junctions
Offset fields in perpendicularly magnetized tunnel junctions
We study the offset fields affecting the free layer of perpendicularly
magnetized tunnel junctions. In extended films, the free layer offset field
results from interlayer exchange coupling with the reference layer through the
MgO tunnel oxide. The free layer offset field is thus accompanied with a shift
of the free layer and reference layer ferromagnetic resonance frequencies. The
shifts depend on the mutual orientation of the two magnetizations. The offset
field decreases with the resistance area product of the tunnel oxide.
Patterning the tunnel junction into an STT-MRAM disk-shaped cell changes
substantially the offset field, as the reduction of the lateral dimension comes
with the generation of stray fields by the reference and the hard layer. The
experimental offset field compares best with the spatial average of the sum of
these stray fields, thereby providing guidelines for the offset field
engineering.Comment: Special issue of J. Phys. D: Appl. Phys (2019) on STT-MRA
Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide
A GEANT-based study of atmospheric neutrino oscillation parameters at INO
We have studied the dependence of the allowed space of the atmospheric
neutrino oscillation parameters on the time of exposure for a magnetized Iron
CALorimeter (ICAL) detector at the India-based Neutrino Observatory (INO). We
have performed a Monte Carlo simulation for a 50 kTon ICAL detector generating
events by the neutrino generator NUANCE and simulating the detector response by
GEANT. A chi-square analysis for the ratio of the up-going and down-going
neutrinos as a function of is performed and the allowed regions at 90%
and 99% CL are displayed. These results are found to be better than the current
experimental results of MINOS and Super-K. The possibilities of further
improvement have also been discussed.Comment: 8 pages, 13 figures, a new figure added, version accepted in IJMP
Cosmology with decaying tachyon matter
We investigate the case of a homogeneous tachyon field coupled to gravity in
a spatially flat Friedman-Robertson-Walker spacetime. Assuming the field
evolution to be exponentially decaying with time we solve the field equations
and show that, under certain conditions, the scale factor represents an
accelerating universe, following a phase of decelerated expansion. We make use
of a model of dark energy (with p=-\rho) and dark matter (p=0) where a single
scalar field (tachyon) governs the dynamics of both the dark components. We
show that this model fits the current supernova data as well as the canonical
\LambdaCDM model. We give the bounds on the parameters allowed by the current
data.Comment: 14 pages, 6 figures, v2, Discussions and references addede
Interaction of D-string with F-string: A Path-Integral Formalism
A path integral formalism is developed to study the interaction of an
arbitrary curved Dirichlet (D-) string with elementary excitations of the
fundumental (F-) string in bosonic string theory. Up to the next to leading
order in the derivative expansion, we construct the properly renormalized
vertex operator, which generalizes the one previously obtained for a D-particle
moving along a curved trajectory. Using this vertex, an attempt is further made
to quantize the D-string coordinates and to compute the quantum amplitude for
scattering between elementary excitations of the D- and F-strings. By studying
the dependence on the Liouville mode for the D-string, it is found that the
vertex in our approximation consists of an infinite tower of local vertex
operators which are conformally invariant on their respective mass-shell. This
analysis indicates that, unlike the D-particle case, an off-shell extension of
the interaction vertex would be necessary to compute the full amplitude and
that the realization of symmetry can be quite non-trivial when the dual
extended objects are simultaneously present. Possible future directions are
suggested.Comment: 23 pages, latex, no figure
Optimal Universal Disentangling Machine for Two Qubit Quantum States
We derive the optimal curve satisfied by the reduction factors, in the case
of universal disentangling machine which uses only local operations.
Impossibility of constructing a better disentangling machine, by using
non-local operations, is discussed.Comment: 15 pages, 2 eps figures, 1 section added, 1 eps figure added, minor
corrections, 2 reference numbers correcte
- …
