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Abstract: We report the successful fabrication of mid-infrared waveguides 
written in a gallium lanthanum sulphide (GLS) substrate via the ultrafast 
laser inscription technique. Single mode guiding at 2485 nm and 3850 nm 

is observed. Spectral broadening spanning 1500 nm (−15dB points) is 
demonstrated under 3850 nm excitation. 
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1. Introduction 

Integrated optics that operate in the mid-infrared (mid-IR) region of the electromagnetic 
spectrum (3-25 µm) are attracting a considerable amount of research interest due to the 
potential applications in remote gas sensors [1], biosensors [2] and stellar interferometry [3]. 
Materials such as zinc selenide [4], silver halide [5], tellurium halides [6] and chalcogenide 
glasses [7] are suitable host materials for such devices due to their excellent mid-IR 
transparency. 

Chalcogenide glasses are based on the chalcogen elements S, Se, and Te [8]. These 
glasses are formed by the addition of other elements such as Ge, As, Sb, Ga, etc. In addition 
to their transparency in the mid-IR they may also offer a high nonlinear refractive index (up 
to ~500 times that of fused silica), low-multi-photon absorption and high photosensitivity. Of 
the chalcogenide glasses, gallium lanthanum sulphide (GLS) is a particularly appealing 
candidate as it is thermally stable up to 550 °C, arsenic free and is commercially available. 

Attempts to fabricate chalcogenide waveguides in the past have included fine embossing 
[9], liquid processing via capillary channel formation [10] and direct pulsed laser deposition 
[11], however these techniques involve several stages of heating and processing or give rise 
to high scattering losses. Here we have utilized the ultrafast laser inscription (ULI) technique 
[12] to fabricate single-mode waveguides embedded in a GLS substrate. We have used a 
femtosecond OPA and the z-scan technique to measure the magnitude of the nonlinear index 
of bulk GLS substrate and have then investigated the nonlinear properties of waveguides 
written into the material. 

ULI is a powerful fabrication technique which relies on the nonlinear absorption of sub-
bandgap photons to induce permanent structural changes to a material. These changes can 
manifest themselves in multiple ways including a change in refractive index [12] and/or an 
increased chemical etch rate [13]. Since ULI relies on a nonlinear absorption mechanism, the 
induced modification can be localized to the high intensity region at the focus of an ultra 
short pulse train. This gives ULI the unique advantage over other waveguide fabrication 
techniques of being capable of forming three dimensional structures [14]. ULI has been 
shown to be applicable to a multitude of materials including crystals [15] and amorphous 
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glasses [16]. ULI is a single step rapid fabrication technique that offers geometric as well as 
material design freedom. Using waveguide shaping techniques, mode sizes can be tailored for 
the particular application [17]. ULI has also been shown to be very suitable for inscribing 
fiber Bragg grating structures [18]. 

2. Waveguide fabrication 

The waveguides were fabricated using a mode-locked Yb-doped fiber laser which emitted 
300 fs pulses with a central wavelength of 1060 nm and a pulse repetition rate of 500 kHz. 
The pulse train from the laser was adjusted to be circularly polarized. The substrate was 
mounted on air bearing stages and pulses from the fabrication laser were focused inside the 
substrate to a distance of 240 µm from the top surface using a 50X (0.67 NA) aspheric lens. 
The single-scan writing technique was used. Fabrication pulse energies incident onto the 
sample were varied from 200 to 37 nJ in decreasing increments of 10%. Four different sample 

translation speeds were investigated: 0.2, 0.4, 0.6 and 0.8 mms−1 with the substrate translation 
being perpendicular to the laser beam direction. After fabrication the input and output facets 
of the substrate were polished giving a sample length of 14.3 mm. The waveguide facets 
exhibit a distinct ‘teardrop’ shape similar to those observed in other chalcogenide glass 
substrates [19,20]. 

3. Waveguide characterization 

Figure 1(a) shows the facet images for two waveguide structures which exhibited single-
mode guiding at 2485 nm and 3850 nm respectively when viewed under a microscope in 
transmission mode. Waveguide І was inscribed with 113 nJ and a sample translation speed of 

0.4 mms−1. Waveguide ІІ was inscribed with 140 nJ pulses and a translation speed of 0.6 

mms−1. Figure 1(b) shows the imaged end facets of the respective waveguides whilst coupling 
2485 nm light into waveguide I and 3850 nm light into waveguide II – both guide a single 
transverse mode. The mode profiles were imaged over a distance of 34 cm with a ZnSe 20X 
(0.25 NA) aspheric lens and captured using a FLIR SC7000 camera. The 1/e2 mode field 
diameter for waveguide І for 2485 nm illumination was calculated to be 19.05 µm in the x-
axis and 23.72 µm in the y-axis. The x- and y-axis mode field diameters for waveguide ІІ 
under 3850 nm excitation were calculated to be 19.34 µm and 27.22 µm. The waveguide 
mode cross-sections are shown in Fig. 1(c). 

 

Fig. 1. (a) Facet images for waveguides I (upper) and II (lower) taken in transmission mode, 
(b) corresponding mode profile images [WG I guiding at 2485 nm. WG II guiding at 3850 
nm.] and (c) their associated mode cross-sections in vertical and horizontal directions. 
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4. Nonlinear properties of GLS 

The nonlinear guiding properties of waveguides І and ІІ were investigated using a 
regeneratively amplified Ti: sapphire system operating at a pulse repetition rate of 1 kHz 
which then pumped an optical parametric amplifier (Newport Spectra-Physics OPA 800). 

4.1 Measurement of bulk nonlinear refractive index at 2485 nm 

In order to fully characterize the waveguides it is essential to study the nonlinear optical 
properties of the bulk material. To determine the magnitude and sign of the nonlinear 
refractive index of bulk GLS at 2485 nm a z-scan experiment [21] was performed on a 1 mm 
thick sample using the idler output of the OPA. The idler output was focused using a 200 mm 
focal length calcium fluoride lens and the sample translated through the focus along the beam 
path whilst recording the far field transmittance through an aperture using a PbSe amplified 
photodiode (Thorlabs PDA20H). Figure 2 shows a closed aperture z-scan trace with pulse 
energies of 500 nJ and an aperture transmission of 50%, the theoretical fit uses the simplified 
closed aperture fitting formula from [22]. The theoretical fit corresponds to a nonlinear 

refractive index of 7.8 ± 0.9 x 10−19 m2W−1at 2485 nm. 

 

Fig. 2. Experimental closed aperture z-scan trace for GLS at 2485 nm. Theoretical (red line) 

fitted with n2 = 7.8 x 10−19 m2W−1. 

4.2 Transmission of femtosecond pulses in inscribed waveguides 

The femtosecond pulse propagation properties of the inscribed waveguides were also 
investigated using the same laser system as outlined above. The idler output was tuned to 
investigate the nonlinear properties at 2485 nm. The OPA output was passed through an 
MgF2 half-wave plate and a BaF2 wire grid polarizer which were used for power and 
polarization control. Two 20X (0.25 NA) ZnSe aspheric lenses were used to couple and then 
collect the light from the test waveguide. This experimental arrangement is shown in Fig. 3. 
Incident power measurements were conducted using a pyro-electric detector (Laser Probe Inc. 
RkP-575) directly before the input coupling lens. After passing through a mechanical chopper 
the output was focused onto the entrance slit of a monochromator with a 5 cm focal length 
calcium fluoride lens. The monochromator (Zolix Omni λ-300) was used in conjunction with 
a PbSe detector and a lock-in amplifier in order to measure the spectral power distribution. 
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Fig. 3. Diagram of experimental set-up. 

Figure 4(a) shows the transmitted spectrum of waveguide I when pulse energies of 72 and 
130 nJ were incident onto the coupling lens. The input pump spectrum is also shown for 
comparison. Figures 4(b) and 4(c) show the individual broadened output spectra plotted with 
a linear scale with arrows indicating self-phase modulation peaks. The focusing spot diameter 
(1/e2) of the input objective was measured to be 12.5 µm. The minimum coupling loss was 
calculated to be 1.21 dB due to the spatial mis-match of the focused spot and that of the 
guided mode using the equation from [23]. The aspheric lens was measured to have a 
throughput loss of 0.97 dB, further losses due to Fresnel reflection at the waveguide facet 
would therefore yield maximum coupled pulse energies of 65.8 nJ (from 130 nJ incident) and 
36.5 nJ (from 72 nJ incident). 

 

Fig. 4. (a) Graph showing normalized transmission spectra of waveguide І for incident 
femtosecond pulse energies of 72 and 130 nJ. For clarity, the graphs for the transmission 
spectra are each offset by 5 dB. (b) Linear scale normalized output of waveguide I with 72 nJ 
incident. (c) Linear scale normalized output of waveguide I with 130 nJ incident. Arrows 
indicate SPM peaks. Estimated coupled pulse energies were 36.5 and 65.8 nJ. 

At the −15dB points the broadened spectrum spanned 899 nm from 2002 nm to 2901 nm. The 
peak of the continuum with the most spectral power is red-shifted by 176 nm with respect to 
the input pulse wavelength and is evidence of stimulated Raman scattering. 
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A similar investigation was conducted using the difference frequency output of the OPA 
tuned to 3850 nm and coupled into waveguide ІІ, a long-pass 2500 nm filter was placed in the 
beam path to block the residual signal and idler radiation. The wavelength of 3850 nm was 
selected as it is close to the material zero dispersion wavelength of the GLS substrate of 4000 
nm. Figure 5 shows the span of continuum when 115 nJ pulses are incident onto the aspheric 
lens. At 3850 nm the aspheric lens was measured to give an input coupling spot size of 14.5 
µm, which would yield a 1.03 dB coupling loss to waveguide II. Taking into account the loss 
due to the spatial mis-match between the waveguide mode and the focusing spot, the Fresnel 
reflection loss and the loss incurred by the aspheric lens gave a maximum coupled pulse 

energy for propagation through the waveguide of 57 nJ (from 115 nJ incident). At the −15 dB 
points the continuum spanned 1588 nm from 2911 nm to 4499 nm from a 14.3 mm long 
waveguide. 

 

Fig. 5. Graph showing OPA pump input and spectrally broadened output after propagation 
through waveguide ІІ with incident pulse energies of 115 nJ onto the coupling objective. 
Estimated coupled pulse energies were 57 nJ. 

5. Discussion 

We have demonstrated single-mode waveguide operation at two separate mid-IR wavelengths 
of 2485 nm and 3850 nm. Mode profiles showing slight ellipticity were recorded. The 
coupling losses due to mode mismatch were calculated to be in excess of 1 dB for both 
waveguides. Writing parameters can be optimized to give circularly symmetric mode profiles 
that can be coupled with low loss to, for example, single mode mid-infrared transmitting 
fibers. 

The nonlinear refractive index of the bulk GLS substrate was measured using the z-scan 

technique at 2485 nm and its value was found to be 7.8 ± 0.9 x 10−19 m2W−1. 
Since the pump wavelength is in the normal dispersion regime, the predominant 

mechanism for spectral broadening is self-phase modulation [24]. Figure 4 shows the onset of 
oscillations in the power spectral density with increasing pump power – which is a 
characteristic of self-phase modulation. The red shifting of the main spectral peak indicates 
that stimulated Raman scattering was another mechanism in the broadening of the 
femtosecond pulses. The broadened output spectrum of waveguide I showed five 
distinguishable peaks for coupled pulse energies of 65.8 nJ, this relates to a maximum 
nonlinear phase shift of 4.5 π inside the waveguide [25] and for 36.5 nJ coupled pulse energy 
there are three SPM peaks resulting from a maximum phase change of 2.5 π. The phase 
change, ∆ØNL, due to nonlinear refractive index, n2, can be defined as: ∆ØNL = n2Ik0L, where 
k0 = 2π/λ, I is the irradiance and L is the waveguide length. Using the maximum phase 
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change from the SPM peaks in Fig. 4 we can calculate a maximum n2 for the modified region 

of 1.43 × 10−19 m2W−1. This value is approximately 5 times lower than that measured using 
the z-scan technique. One factor that will lead to a discrepancy between the values of n2 
determined from the z-scan measurement and the SPM spectral inference is the dispersion 
occurring inside the waveguide; this will broaden the pulse width and reduce the effective 
irradiance along the sample length. Finally, it has been seen in studies on waveguides written 
inside fused silica substrates [26] that the ULI technique can cause changes to the nonlinear 
refractive index. It was shown that the waveguide nonlinear indices were up to four times 
lower than that of the unmodified regions and was very dependent on the writing parameters. 
It is planned to carry out z-scan measurements on large area modified GLS samples to 
examine its dependence on writing parameters, particularly writing speed. The continuum 
generated by waveguide ІІ under 3850 nm pumping was smoother and a moderate blue shift 
with respect to the pump-wavelength was observed. 

6. Conclusion 

We have used the ULI technique to fabricate waveguides inside a GLS substrate. Two 
waveguides were characterized one of which supported single mode transmission at 2485 nm 
and the second supported single mode transmission at 3850 nm. Using waveguide shaping 
techniques the ellipticity of the waveguide mode can be reduced thereby reducing the 
coupling loss to circularly symmetric fiber modes. The nonlinear optical properties of these 
waveguides were studied using a femtosecond OPA. Nonlinear spectral broadening at pump 
wavelengths of 2485 nm and 3850 nm was investigated and both waveguides were found to 

spectrally broaden femtosecond pulses. At the −15 dB points the broadened radiation spanned 
899 nm and 1588 nm respectively. Guided spectrally broadened radiation was recorded at 
wavelengths of greater than 4500 nm. This is the first report of guided radiation beyond 4 µm 
in an ULI fabricated waveguide. Continuum radiation guided in a single-mode at these 
wavelengths is of great interest for sensing applications and opens the way for truly integrated 
mid-IR optics. Analysis of the characteristic SPM peaks in waveguide I allowed an inference 

of the upper limit of the nonlinear refractive index of the modified GLS of 1.43 × 10−19 

m2W−1. We have also measured the nonlinear refractive index of the un-modified GLS 

substrate to be 7.8 ± 0.9 x 10−19 m2 W−1 using the z-scan method. The apparent reduction of 
nonlinear refractive index in unmodified material is large and efforts are underway to directly 
measure the nonlinear refractive index of modified GLS using z-scan of large modified 
regions, this will allow the investigation of the roles of various writing parameters on the 
change in nonlinear index, in particular variation of scan speed. 

Acknowledgments 

This work was funded by the UK Engineering and Physical Sciences Research Council 
(EPSRC EP/F067690/1 and EP/G030227/1). HTB is supported by a Royal Society of 
Edinburgh – Scottish Government Personal Research Fellowship. RRT acknowledges support 
through an STFC Advanced Fellowship (ST/H005595/1). This work is also partially funded 
by the ongoing Indo-UK collaboration under the UK-India Education and Research Initiative 
(UKIERI). 

 

#157619 - $15.00 USD Received 7 Nov 2011; revised 21 Dec 2011; accepted 22 Dec 2011; published 10 Jan 2012
(C) 2012 OSA 16 January 2012 / Vol. 20,  No. 2 / OPTICS EXPRESS  1551


