20,165 research outputs found

    An Improved Variable Structure Adaptive Filter Design and Analysis for Acoustic Echo Cancellation

    Get PDF
    In this research an advance variable structure adaptive Multiple Sub-Filters (MSF) based algorithm for single channel Acoustic Echo Cancellation (AEC) is proposed and analyzed. This work suggests a new and improved direction to find the optimum tap-length of adaptive filter employed for AEC. The structure adaptation, supported by a tap-length based weight update approach helps the designed echo canceller to maintain a trade-off between the Mean Square Error (MSE) and time taken to attain the steady state MSE. The work done in this paper focuses on replacing the fixed length sub-filters in existing MSF based AEC algorithms which brings refinements in terms of convergence, steady state error and tracking over the single long filter, different error and common error algorithms. A dynamic structure selective coefficient update approach to reduce the structural and computational cost of adaptive design is discussed in context with the proposed algorithm. Simulated results reveal a comparative performance analysis over proposed variable structure multiple sub-filters designs and existing fixed tap-length sub-filters based acoustic echo cancellers

    Wormholes in spacetime with torsion

    Full text link
    Analytical wormhole solutions in U4U_4 theory are presented. It is discussed whether the extremely short range repulsive forces, related to the spin angular momentum of matter, could be the ``carrier'' of the exoticity that threads the wormhole throat.Comment: 10 pages revte

    Applications of fiber lasers for the development of compact photonic devices

    Get PDF

    The Generalised Raychaudhuri Equations : Examples

    Get PDF
    Specific examples of the generalized Raychaudhuri Equations for the evolution of deformations along families of DD dimensional surfaces embedded in a background NN dimensional spacetime are discussed. These include string worldsheets embedded in four dimensional spacetimes and two dimensional timelike hypersurfaces in a three dimensional curved background. The issue of focussing of families of surfaces is introduced and analysed in some detail.Comment: 8 pages (Revtex, Twocolumn format). Corrected(see section on string worldsheets), reorganised and shortened slightl

    Localized reversible nanoscale phase separation in Pr_0.63Ca_0.37MnO_3 single crystal using a scanning tunneling microscope tip

    Full text link
    We report the destabilization of the charge ordered insulating (COI) state in a localized region of Pr_0.63Ca_0.37MnO_3 single crystal by current injection using a scanning tunneling microscope tip. This leads to controlled phase separation and formation of localized metallic nanoislands in the COI matrix which have been detected by local tunneling conductance mapping. The metallic regions thus created persist even after reducing the injected current to lower values. The original conductance state can be restored by injecting a current of similar magnitude but of opposite polarity. We thus achieve reversible nanoscale phase separation that gives rise to the possibility to "write, read, and erase" nanosized conducting regions in an insulating matrix with high spatial resolution.Comment: 8 pages, 4 figures, Appl. Phys. Lett (accepted for publication

    Frequency-dependent (ac) Conduction in Disordered Composites: a Percolative Study

    Full text link
    In a recent paper [Phys. Rev. B{\bf57}, 3375 (1998)], we examined in detail the nonlinear (electrical) dc response of a random resistor cum tunneling bond network (RRTNRRTN, introduced by us elsewhere to explain nonlinear response of metal-insulator type mixtures). In this work which is a sequel to that paper, we consider the ac response of the RRTNRRTN-based correlated RCRC (CRCCRC) model. Numerical solutions of the Kirchoff's laws for the CRCCRC model give a power-law exponent (= 0.7 near p=pcp = p_c) of the modulus of the complex ac conductance at moderately low frequencies, in conformity with experiments on various types of disordered systems. But, at very low frequencies, it gives a simple quadratic or linear dependence on the frequency depending upon whether the system is percolating or not. We do also discuss the effective medium approximation (EMAEMA) of our CRCCRC and the traditional random RCRC network model, and discuss their comparative successes and shortcomings.Comment: Revised and reduced version with 17 LaTeX pages plus 8 JPEG figure

    Stable two--brane models with bulk tachyon matter

    Full text link
    We explore the possibility of constructing stable, warped two--brane models which solve the hierarchy problem, with a bulk non--canonical scalar field (tachyon matter) as the source term in the action. Among our examples are two models--one with a warp factor (denoted as e2f(σ)e^{-2f(\sigma)}) which differs from that of the standard Randall--Sundrum by the addition of a quadratic piece in the f(σ)f(\sigma) and another, where the warping is super-exponential. We investigate the issue of resolution of hierarchy and perform a stability analysis by obtaining the effective inter-brane potentials, in each case. Our analysis reveals that there does exist stable values of the modulus consistent with hierarchy resolution in both the models. Thus, these models, in which the bulk scalar field generates the geometry and also ensures stability, provide viable alternatives to the standard Randall--Sundrum two-brane scenario.Comment: Final version published in Int. Jr. Mod. Phys

    DILAND: An Algorithm for Distributed Sensor Localization with Noisy Distance Measurements

    Full text link
    In this correspondence, we present an algorithm for distributed sensor localization with noisy distance measurements (DILAND) that extends and makes the DLRE more robust. DLRE is a distributed sensor localization algorithm in Rm\mathbb{R}^m (m1)(m\geq1) introduced in \cite{usman_loctsp:08}. DILAND operates when (i) the communication among the sensors is noisy; (ii) the communication links in the network may fail with a non-zero probability; and (iii) the measurements performed to compute distances among the sensors are corrupted with noise. The sensors (which do not know their locations) lie in the convex hull of at least m+1m+1 anchors (nodes that know their own locations.) Under minimal assumptions on the connectivity and triangulation of each sensor in the network, this correspondence shows that, under the broad random phenomena described above, DILAND converges almost surely (a.s.) to the exact sensor locations.Comment: Submitted to the IEEE Transactions on Signal Processing. Initial submission on May 2009. 12 page
    corecore