15,068 research outputs found

    An Improved Variable Structure Adaptive Filter Design and Analysis for Acoustic Echo Cancellation

    Get PDF
    In this research an advance variable structure adaptive Multiple Sub-Filters (MSF) based algorithm for single channel Acoustic Echo Cancellation (AEC) is proposed and analyzed. This work suggests a new and improved direction to find the optimum tap-length of adaptive filter employed for AEC. The structure adaptation, supported by a tap-length based weight update approach helps the designed echo canceller to maintain a trade-off between the Mean Square Error (MSE) and time taken to attain the steady state MSE. The work done in this paper focuses on replacing the fixed length sub-filters in existing MSF based AEC algorithms which brings refinements in terms of convergence, steady state error and tracking over the single long filter, different error and common error algorithms. A dynamic structure selective coefficient update approach to reduce the structural and computational cost of adaptive design is discussed in context with the proposed algorithm. Simulated results reveal a comparative performance analysis over proposed variable structure multiple sub-filters designs and existing fixed tap-length sub-filters based acoustic echo cancellers

    Convergence Rate Analysis of Distributed Gossip (Linear Parameter) Estimation: Fundamental Limits and Tradeoffs

    Full text link
    The paper considers gossip distributed estimation of a (static) distributed random field (a.k.a., large scale unknown parameter vector) observed by sparsely interconnected sensors, each of which only observes a small fraction of the field. We consider linear distributed estimators whose structure combines the information \emph{flow} among sensors (the \emph{consensus} term resulting from the local gossiping exchange among sensors when they are able to communicate) and the information \emph{gathering} measured by the sensors (the \emph{sensing} or \emph{innovations} term.) This leads to mixed time scale algorithms--one time scale associated with the consensus and the other with the innovations. The paper establishes a distributed observability condition (global observability plus mean connectedness) under which the distributed estimates are consistent and asymptotically normal. We introduce the distributed notion equivalent to the (centralized) Fisher information rate, which is a bound on the mean square error reduction rate of any distributed estimator; we show that under the appropriate modeling and structural network communication conditions (gossip protocol) the distributed gossip estimator attains this distributed Fisher information rate, asymptotically achieving the performance of the optimal centralized estimator. Finally, we study the behavior of the distributed gossip estimator when the measurements fade (noise variance grows) with time; in particular, we consider the maximum rate at which the noise variance can grow and still the distributed estimator being consistent, by showing that, as long as the centralized estimator is consistent, the distributed estimator remains consistent.Comment: Submitted for publication, 30 page

    Gossip and Distributed Kalman Filtering: Weak Consensus under Weak Detectability

    Full text link
    The paper presents the gossip interactive Kalman filter (GIKF) for distributed Kalman filtering for networked systems and sensor networks, where inter-sensor communication and observations occur at the same time-scale. The communication among sensors is random; each sensor occasionally exchanges its filtering state information with a neighbor depending on the availability of the appropriate network link. We show that under a weak distributed detectability condition: 1. the GIKF error process remains stochastically bounded, irrespective of the instability properties of the random process dynamics; and 2. the network achieves \emph{weak consensus}, i.e., the conditional estimation error covariance at a (uniformly) randomly selected sensor converges in distribution to a unique invariant measure on the space of positive semi-definite matrices (independent of the initial state.) To prove these results, we interpret the filtered states (estimates and error covariances) at each node in the GIKF as stochastic particles with local interactions. We analyze the asymptotic properties of the error process by studying as a random dynamical system the associated switched (random) Riccati equation, the switching being dictated by a non-stationary Markov chain on the network graph.Comment: Submitted to the IEEE Transactions, 30 pages

    The Generalised Raychaudhuri Equations : Examples

    Get PDF
    Specific examples of the generalized Raychaudhuri Equations for the evolution of deformations along families of DD dimensional surfaces embedded in a background NN dimensional spacetime are discussed. These include string worldsheets embedded in four dimensional spacetimes and two dimensional timelike hypersurfaces in a three dimensional curved background. The issue of focussing of families of surfaces is introduced and analysed in some detail.Comment: 8 pages (Revtex, Twocolumn format). Corrected(see section on string worldsheets), reorganised and shortened slightl

    Cosmic optical activity from an inhomogeneous Kalb-Ramond field

    Get PDF
    The effects of introducing a harmonic spatial inhomogeneity into the Kalb-Ramond field, interacting with the Maxwell field according to a `string-inspired' proposal made in earlier work are investigated. We examine in particular the effects on the polarization of synchrotron radiation from cosmologically distant (i.e. of redshift greater than 2) galaxies, as well as the relation between the electric and magnetic components of the radiation field. The rotation of the polarization plane of linearly polarized radiation is seen to acquire an additional contribution proportional to the square of the frequency of the dual Kalb-Ramond axion wave, assuming that it is far smaller compared to the frequency of the radiation field.Comment: 9 pages, Revtex, no figure

    Sensor Networks with Random Links: Topology Design for Distributed Consensus

    Full text link
    In a sensor network, in practice, the communication among sensors is subject to:(1) errors or failures at random times; (3) costs; and(2) constraints since sensors and networks operate under scarce resources, such as power, data rate, or communication. The signal-to-noise ratio (SNR) is usually a main factor in determining the probability of error (or of communication failure) in a link. These probabilities are then a proxy for the SNR under which the links operate. The paper studies the problem of designing the topology, i.e., assigning the probabilities of reliable communication among sensors (or of link failures) to maximize the rate of convergence of average consensus, when the link communication costs are taken into account, and there is an overall communication budget constraint. To consider this problem, we address a number of preliminary issues: (1) model the network as a random topology; (2) establish necessary and sufficient conditions for mean square sense (mss) and almost sure (a.s.) convergence of average consensus when network links fail; and, in particular, (3) show that a necessary and sufficient condition for both mss and a.s. convergence is for the algebraic connectivity of the mean graph describing the network topology to be strictly positive. With these results, we formulate topology design, subject to random link failures and to a communication cost constraint, as a constrained convex optimization problem to which we apply semidefinite programming techniques. We show by an extensive numerical study that the optimal design improves significantly the convergence speed of the consensus algorithm and can achieve the asymptotic performance of a non-random network at a fraction of the communication cost.Comment: Submitted to IEEE Transaction
    • …
    corecore