621 research outputs found
Experimental evidence of strong phonon scattering in isotopical disordered systems: The case of LiH_xD_{1-x} crystals
The observation of the local - mode vibration, the two - mode behavior of the
LO phonons at large isotope concentration, as well as large line broadening in
LIH - D mixed crystals directly evidence strong additional phonon scattering
due to the isotope - induced disorder.Comment: 9 pages, 4 figure
Search for flavor-changing neutral currents and lepton-family-number violation in two-body D0 decays
Results of a search for the three neutral charm decays, D0 -> mu e, D0 -> mu
mu, and D0 -> e e, are presented. This study was based on data collected in
Experiment 789 at the Fermi National Accelerator Laboratory using 800 GeV/c
proton-Au and proton-Be interactions. No evidence is found for any of the
decays. Upper limits on the branching ratios, at the 90% confidence level, are
obtained.Comment: 28 pages, 18 figures. Submitted to Physical Review
Inclusive cross section and double-helicity asymmetry for production at midrapidity in collisions at GeV
PHENIX measurements are presented for the cross section and double-helicity
asymmetry () in inclusive production at midrapidity from
collisions at ~GeV from data taken in 2012 and 2013 at
the Relativistic Heavy Ion Collider. The next-to-leading-order
perturbative-quantum-chromodynamics theory calculation is in excellent
agreement with the presented cross section results. The calculation utilized
parton-to-pion fragmentation functions from the recent DSS14 global analysis,
which prefer a smaller gluon-to-pion fragmentation function. The
results follow an increasingly positive asymmetry trend with
and with respect to the predictions and are in excellent
agreement with the latest global analysis results. This analysis incorporated
earlier results on and jet , and suggested a positive
contribution of gluon polarization to the spin of the proton for the
gluon momentum fraction range . The data presented here extend to a
currently unexplored region, down to , and thus provide additional
constraints on the value of . The results confirm the evidence for
nonzero using a different production channel in a complementary
kinematic region.Comment: 413 authors, 8 pages, 4 figures. v2 is version accepted as PRD Rapid
Communication. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Single electron yields from semileptonic charm and bottom hadron decays in AuAu collisions at GeV
The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured
open heavy-flavor production in minimum bias AuAu collisions at
GeV via the yields of electrons from semileptonic decays
of charm and bottom hadrons. Previous heavy-flavor electron measurements
indicated substantial modification in the momentum distribution of the parent
heavy quarks due to the quark-gluon plasma created in these collisions. For the
first time, using the PHENIX silicon vertex detector to measure precision
displaced tracking, the relative contributions from charm and bottom hadrons to
these electrons as a function of transverse momentum are measured in AuAu
collisions. We compare the fraction of electrons from bottom hadrons to
previously published results extracted from electron-hadron correlations in
collisions at GeV and find the fractions to be
similar within the large uncertainties on both measurements for
GeV/. We use the bottom electron fractions in AuAu and along
with the previously measured heavy flavor electron to calculate the
for electrons from charm and bottom hadron decays separately. We find
that electrons from bottom hadron decays are less suppressed than those from
charm for the region GeV/.Comment: 432 authors, 33 pages, 23 figures, 2 tables, 2011 data. v2 is version
accepted for publication by Phys. Rev. C. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Nuclear matter effects on production in asymmetric Cu+Au collisions at = 200 GeV
We report on production from asymmetric Cu+Au heavy-ion collisions
at =200 GeV at the Relativistic Heavy Ion Collider at both
forward (Cu-going direction) and backward (Au-going direction) rapidities. The
nuclear modification of yields in CuAu collisions in the Au-going
direction is found to be comparable to that in AuAu collisions when plotted
as a function of the number of participating nucleons. In the Cu-going
direction, production shows a stronger suppression. This difference is
comparable in magnitude and has the same sign as the difference expected from
shadowing effects due to stronger low- gluon suppression in the larger Au
nucleus. The relative suppression is opposite to that expected from hot nuclear
matter dissociation, since a higher energy density is expected in the Au-going
direction.Comment: 349 authors, 10 pages, 4 figures, and 4 tables. Submitted to Phys.
Rev. C. For v2, fixed LaTeX error in 3rd-to-last sentence. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
L\'evy-stable two-pion Bose-Einstein correlations in GeV AuAu collisions
We present a detailed measurement of charged two-pion correlation functions
in 0%-30% centrality GeV AuAu collisions by the
PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well
described by Bose-Einstein correlation functions stemming from L\'evy-stable
source distributions. Using a fine transverse momentum binning, we extract the
correlation strength parameter , the L\'evy index of stability
and the L\'evy length scale parameter as a function of average
transverse mass of the pair . We find that the positively and the
negatively charged pion pairs yield consistent results, and their correlation
functions are represented, within uncertainties, by the same L\'evy-stable
source functions. The measurements indicate a decrease of the
strength of the correlations at low . The L\'evy length scale parameter
decreases with increasing , following a hydrodynamically
predicted type of scaling behavior. The values of the L\'evy index of stability
are found to be significantly lower than the Gaussian case of
, but also significantly larger than the conjectured value that may
characterize the critical point of a second-order quark-hadron phase
transition.Comment: 448 authors, 25 pages, 11 figures, 4 tables, 2010 data. v2 is version
accepted for publication in Phys. Rev. C. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
- …