23 research outputs found

    3D Human Pose Estimation on a Configurable Bed from a Pressure Image

    Get PDF
    Robots have the potential to assist people in bed, such as in healthcare settings, yet bedding materials like sheets and blankets can make observation of the human body difficult for robots. A pressure-sensing mat on a bed can provide pressure images that are relatively insensitive to bedding materials. However, prior work on estimating human pose from pressure images has been restricted to 2D pose estimates and flat beds. In this work, we present two convolutional neural networks to estimate the 3D joint positions of a person in a configurable bed from a single pressure image. The first network directly outputs 3D joint positions, while the second outputs a kinematic model that includes estimated joint angles and limb lengths. We evaluated our networks on data from 17 human participants with two bed configurations: supine and seated. Our networks achieved a mean joint position error of 77 mm when tested with data from people outside the training set, outperforming several baselines. We also present a simple mechanical model that provides insight into ambiguity associated with limbs raised off of the pressure mat, and demonstrate that Monte Carlo dropout can be used to estimate pose confidence in these situations. Finally, we provide a demonstration in which a mobile manipulator uses our network's estimated kinematic model to reach a location on a person's body in spite of the person being seated in a bed and covered by a blanket.Comment: 8 pages, 10 figure

    Interleaving Planning and Control for Efficient Haptically-guided Reaching in Unknown Environments

    Get PDF
    ©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Presented at the IEEE-RAS International Conference on Humanoid Robots (Humanoids), 18-20 November 2014, Madrid, Spain.We present a new method for reaching in an initially unknown environment with only haptic sensing. In this paper, we propose a haptically-guided interleaving planning and control (HIPC) method with a haptic mapping framework. HIPC runs two planning methods, interleaving a task-space and a joint-space planner, to provide fast reaching performance. It continually replans a valid trajectory, alternating between planners and quickly reflecting collected tactile information from an unknown environment. One key idea is that tactile sensing can be used to directly map an immediate cause of interference when reaching. The mapping framework efficiently assigns raw tactile information from whole-arm tactile sensors into a 3D voxel-based collision map. Our method uses a previously published contact-regulating controller based on model predictive control (MPC). In our evaluation with a physics simulation of a humanoid robot, interleaving was superior at reaching in the 9 types of environments we used

    The surviving spouse in Spanish law

    Get PDF
    Artículo del Dossier: Sobrevivir al conyuge: viudas y viudedad en la España Moderna.Este artículo va a abordar la problemática derivada de la ruptura del vínculo matrimonial por muerte de uno de los cónyuges y cómo los diversos sistemas jurídicos hispanos han regulado ese tránsito y sus efectos personales y económicos sobre el cónyuge superviviente. El tempus lugendi, las segundas nupcias, la restitución dotal, el usufructo vidual o la tutela son algunas de las problemáticas estudiadas. Los sistemas jurídicos de la Valencia foral, Cataluña y el derecho territorial de Castilla han sido los ejes vertebradores de este trabajo, con algunas referencias puntuales a Aragón y Navarra. No obstante la parcialidad de este acercamiento pienso que se ofrece una visión clara de lo que es a la vez unidad y diversidad de las legislaciones, las raíces comunes y las soluciones particulares.This article tackles the problems arising from the breaking of the matrimonial bond due to the death of one of the spouses and how the different Spanish legal systems have regulated this transition and its personal and economic effects on the surviving spouse. Tempus lugendi, second marriages, dowry restitution, curtsey rights and custody are some of the problems studied. The legal systems of the “Foral” Valencia, Catalonia and the territorial law of Castile have been the backbones of this piece of research, with some occasional references to Aragon and Navarre. Notwithstanding the partiality of this approach, I think that a clear view is offered of what is both the unity and diversity of the legislations, the common roots and specific solutions.Departamento de Historia Moderna y de América, Universidad de Granada

    Towards Reliable Colorectal Cancer Polyps Classification via Vision Based Tactile Sensing and Confidence-Calibrated Neural Networks

    Full text link
    In this study, toward addressing the over-confident outputs of existing artificial intelligence-based colorectal cancer (CRC) polyp classification techniques, we propose a confidence-calibrated residual neural network. Utilizing a novel vision-based tactile sensing (VS-TS) system and unique CRC polyp phantoms, we demonstrate that traditional metrics such as accuracy and precision are not sufficient to encapsulate model performance for handling a sensitive CRC polyp diagnosis. To this end, we develop a residual neural network classifier and address its over-confident outputs for CRC polyps classification via the post-processing method of temperature scaling. To evaluate the proposed method, we introduce noise and blur to the obtained textural images of the VS-TS and test the model's reliability for non-ideal inputs through reliability diagrams and other statistical metrics

    Optimization of Robot Configurations for Assistive Tasks

    Get PDF
    Robots can provide assistance with activities of daily living (ADLs) to humans with motor impairments. Specialized robots, such as desktop robotic feeding systems, have been successful for specific assistive tasks when placed in fixed and designated positions with respect to the user. General-purpose mobile manipulators could act as a more versatile form of assistive technology, able to perform many tasks, but selecting a configuration for the robots from which to perform a task can be challenging due to the high number of degrees of freedom of the robots and the complexity of the tasks. As with the specialized, fixed robots, once in a good configuration, another system or the user can provide the fine control to perform the details of the task. In this short paper, we present Task-centric Optimization of robot Configurations (TOC), a method for selecting configurations for a PR2 and a robotic bed to allow the PR2 to provide effective assistance with ADLs. TOC builds upon previous work, Task-centric initial Configuration Selection (TCS), addressing some of the limitations of TCS. Notable alterations are selecting configurations from the continuous configuration space using a Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimization, introducing a joint-limit-weighted manipulability term, and changing the framework to move all optimization offline and using function approximation at run-time. To evaluate TOC, we created models of 13 activities of daily living (ADLs) and compared TOC’s and TCS’s performance with these 13 assistive tasks in a computer simulation of a PR2, a robotic bed, and a model of a human body. TOC performed as well or better than TCS in most of our tests against state estimation error. We also implemented TOC on a real PR2 and a real robotic bed and found that from the TOC-selected configuration the PR2 could reach all task-relevant goals on a mannequin on the bed

    Collaboration Between a Robotic Bed and a Mobile Manipulator May Improve Physical Assistance for People with Disabilities

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.We present a robotic system designed to provide physical assistance to a person in bed. The system consists of a robotic bed (Autobed) and a mobile manipulator (PR2) that work together. The 3 degree-of-freedom (DoF) robotic bed moves the person’s body and uses a pressure sensing mat to estimate the body’s position. The mobile manipulator positions itself with respect to the bed and compliantly moves a lightweight object with one of its 7-DoF arms. The system optimizes its motions with respect to a task model and a model of the human’s body. The user provides high-level supervision to the system via a web-based interface. We first evaluated the ability of the robotic bed to estimate the location of the head of a person in a supine configuration via a study with 7 able-bodied participants. This estimation was robust to bedding, including a pillow under the person’s head. We then evaluated the ability of the full system to autonomously reach task-relevant poses on a medical mannequin placed in a supine position on the bed. We found that the robotic bed’s motion and perception each improved the overall system’s performance. Our results suggest that this type of multi-robot system could more effectively bring objects to desired locations with respect to the user’s body than a mobile manipulator working alone. This may in turn lead to improved physical assistance for people with disabilities at home and in healthcare facilities, since many assistive tasks involve an object being moved with respect to a person’s body
    corecore