3,106 research outputs found

    Modification of Z Boson Properties in Quark-Gluon Plasma

    Full text link
    We calculate the change in the effective mass and width of a Z boson in the environment of a quark-gluon plasma under the conditions expected in Pb-Pb collisions at the LHC. The change in width is predicted to be only about 1 MeV at a temperature of 1 GeV, compared to the natural width of 2490±\pm7 MeV. The mass shift is even smaller. Hence no observable effects are to be expected.Comment: 7 pages latex file with 6 embedded PS figure

    A Center-Symmetric 1/N Expansion

    Full text link
    The free energy of U(N) gauge theory is expanded about a center-symmetric topological background configuration with vanishing action and vanishing Polyakov loops. We construct this background for SU(N) lattice gauge theory and show that it uniquely describes center-symmetric minimal action orbits in the limit of infinite lattice volume. The leading contribution to the free energy in the 1/N expansion about this background is of O(N^0) rather than O(N^2) as one finds when the center symmetry is spontaneously broken. The contribution of planar 't Hooft diagrams to the free energy is O(1/N^2) and sub-leading in this case. The change in behavior of the diagrammatic expansion is traced to Linde's observation that the usual perturbation series of non-Abelian gauge theories suffers from severe infrared divergences. This infrared problem does not arise in a center-symmetric expansion. The 't Hooft coupling \lambda=g^2 N is found to decrease proportional to 1/\ln(N) for large N. There is evidence of a vector-ghost in the planar truncation of the model.Comment: 27 pages, 2 figures; extended and corrected version with additional material and reference

    Bulk Viscosity of Interacting Hadrons

    Full text link
    We show that first approximations to the bulk viscosity ηv\eta_v are expressible in terms of factors that depend on the sound speed vsv_s, the enthalpy, and the interaction (elastic and inelastic) cross section. The explicit dependence of ηv\eta_v on the factor (13vs2)(\frac 13 - v_s^2) is demonstrated in the Chapman-Enskog approximation as well as the variational and relaxation time approaches. The interesting feature of bulk viscosity is that the dominant contributions at a given temperature arise from particles which are neither extremely nonrelativistic nor extremely relativistic. Numerical results for a model binary mixture are reported.Comment: 4 pages, 1 figure, Contribution to Quark Matter 2009, Knoxville, Tennessee, US

    Anomalies at finite density and chiral fermions

    Get PDF
    Using perturbation theory in the Euclidean (imaginary time) formalism as well as the non-perturbative Fujikawa method, we verify that the chiral anomaly equation remains unaffected in the presence of nonzero chemical potential, μ\mu. We extend our considerations to fermions with exact chiral symmetry on the lattice and discuss the consequences for the recent Bloch-Wettig proposal for the Dirac operator at finite chemical potential. We propose a new simpler method of incorporating μ\mu and compare it with the Bloch-Wettig idea.Comment: 12 pages, 3 figures,some typos corrected, a better proof for the \mu independence of anomaly is given in section IIB, v4: the published versio

    Effects of a Thermal Bath of Photons on Embedded String Stability

    Full text link
    We compute the corrections of thermal photons on the effective potential for the linear sigma model of QCD. Since we are interested in temperatures lower than the confinement temperature, we consider the scalar fields to be out of equilibrium. Two of the scalar field are uncharged while the other two are charged under the U(1) gauge symmetry of electromagnetism. We find that the induced thermal terms in the effective potential can stabilize the embedded pion string, a string configuration which is unstable in the vacuum. Our results are applicable in a more general context and demonstrate that embedded string configurations arising in a wider class of field theories can be stabilized by thermal effects. Another well-known example of an embedded string which can be stabilized by thermal effects is the electroweak Z-string. We discuss the general criteria for thermal stabilization of embedded defects.Comment: 6 pages, formatting changed, a few typos correcte

    Spontaneous symmetry breaking in the linear sigma model at finite chemical potential: One-loop corrections

    Get PDF
    We investigate spontaneous symmetry breaking within the linear sigma model with the SU(2)xU(1) internal symmetry at finite chemical potential, which was suggested as a model for kaon condensation in the CFL phase of dense quark matter. One-loop corrections to the scalar field effective potential as well as its propagator are calculated. Particular attention is paid to the type-II Goldstone boson that appears in the Bose--Einstein condensed phase. Furthermore, we show that the type-I Goldstone boson -- the superfluid phonon -- is allowed to decay due to the nonlinearity of its dispersion relation at high momentum, and determine its decay width.Comment: 13 pages, REVTeX4, 37 eps figures; v2: substantial error in Sec. IV corrected, references added, other minor corrections; version to appear in Phys. Rev.

    Hard thermal effective action in QCD through the thermal operator

    Get PDF
    Through the application of the thermal operator to the zero temperature retarded Green's functions, we derive in a simple way the well known hard thermal effective action in QCD. By relating these functions to forward scattering amplitudes for on-shell particles, this derivation also clarifies the origin of important properties of the hard thermal effective action, such as the manifest Lorentz and gauge invariance of its integrand.Comment: 6 pages, contribution of the quarks to the effective action included and one reference added, version to be published in Phys. Rev.

    Phase Fluctuations near the Chiral Critical Point

    Full text link
    The Helmholtz free energy density is parametrized as a function of temperature and baryon density near the chiral critical point of QCD. The parametrization incorporates the expected critical exponents and amplitudes. An expansion away from equilibrium states is achieved with Landau theory. This is used to calculate the probability that the system is found at a density other than the equilibrium one. Such fluctuations are predicted to be very large in heavy ion collisions.Comment: 7 pages, 8 figures, Winter Workshop on Nuclear Dynamics 201

    On the imaginary parts and infrared divergences of two-loop vector boson self-energies in thermal QCD

    Get PDF
    We calculate the imaginary part of the retarded two-loop self-energy of a static vector boson in a plasma of quarks and gluons of temperature T, using the imaginary time formalism. We recombine various cuts of the self-energy to generate physical processes. We demonstrate how cuts containing loops may be reinterpreted in terms of interference between Order α\alpha tree diagrams and the Born term along with spectators from the medium. We apply our results to the rate of dilepton production in the limit of dilepton invariant mass E>>T. We find that all infrared and collinear singularities cancel in the final result obtained in this limit.Comment: references added, typos corrected, slightly abridged, version accepted for publication in Phys. Rev.

    Effective actions at finite temperature

    Full text link
    This is a more detailed version of our recent paper where we proposed, from first principles, a direct method for evaluating the exact fermion propagator in the presence of a general background field at finite temperature. This can, in turn, be used to determine the finite temperature effective action for the system. As applications, we discuss the complete one loop finite temperature effective actions for 0+1 dimensional QED as well as for the Schwinger model in detail. These effective actions, which are derived in the real time (closed time path) formalism, generate systematically all the Feynman amplitudes calculated in thermal perturbation theory and also show that the retarded (advanced) amplitudes vanish in these theories. Various other aspects of the problem are also discussed in detail.Comment: 9 pages, revtex, 1 figure, references adde
    corecore