5 research outputs found

    Targeted DNA sequencing to identify genetic aberrations in glioblastoma that underlie venous thromboembolism; a cohort study

    Get PDF
    Background and objectives: Patients with glioblastoma have a high risk of developing venous thromboembolism (VTE). However, the role of underlying genetic risk factors remains largely unknown. Therefore, the aim of this study was to discover whether genetic aberrations in glioblastoma associate with VTE risk.Methods: In this cohort study, all consecutive patients diagnosed with glioblastoma in two Dutch hospitals be-tween February 2017 and August 2020 were included. Targeted DNA next-generation sequencing of all glio-blastomas was performed for diagnostic purposes and included mutational status of the genes ATRX, BRAF, CIC, FUBP1, H3F3A, IDH1, IDH2, PIK3CA, PTEN and TP53 and amplification/gain or deletion of BRAF, CDKN2A, EGFR, NOTCH1 and PTEN. The primary outcome was VTE within three months before glioblastoma diagnosis until two years after. Cumulative incidences were determined using competing risk analysis adjusting for mor-tality. Univariable Cox regression analysis was performed to determine hazard ratios.Results: From 324 patients with glioblastoma, 25 were diagnosed with VTE. Patients with a CDKN2A deletion had a 12-month adjusted cumulative incidence of VTE of 12.5 % (95%CI: 7.3-19.3) compared with 5.4 % (95%CI: 2.6-9.6) in patients with CDKN2A wildtype (p = 0.020), corresponding to a HR of 2.53 (95%CI: 1.12-5.73, p = 0.026). No significant associations were found between any of the other investigated genes and VTE.Conclusion: This study suggests a potential role for CDKN2A deletion in glioblastoma-related VTE. Therefore, once independently validated, CDKN2A mutational status may be a promising predictor to identify glioblastoma patients at high risk for VTE, who may benefit from thromboprophylaxis

    Role of Tissue Factor in Tumor Progression and Cancer-Associated Thrombosis

    No full text
    It has been long-established that cancer and thrombosis are linked, but the exact underlying pathological mechanism remains to be unraveled. As the initiator of the coagulation cascade, the transmembrane glycoprotein tissue factor (TF) has been intensely investigated for its role in cancer-associated thrombosis and cancer progression. TF expression is regulated by both specific oncogenes and environmental factors, and it is shown to regulate primary growth and metastasis formation in a variety of cancer models. In clinical studies, TF has been shown to be overexpressed in most cancer types and is strongly associated with disease progression. While TF clearly associates with cancer progression, a prominent role for TF in the development of cancer-associated thrombosis is less clear. The current concept is that cancer-associated thrombosis is associated with the secretion of tumor-derived TF-positive extracellular vesicles in certain tumor types. To date, many therapeutic strategies to target TF-both in preclinical and clinical phase-are being pursued, including targeting TF or the TF:FVIIa complex by itself or by exploiting TF as a docking molecule to deliver cytotoxic compounds to the tumor. In this review, the authors summarize the current understanding of the role of TF in both cancer progression and cancer-associated thrombosis, and discuss novel insights on TF as a therapeutic target as well as a biomarker for cancer progression and VTE.Thrombosis and Hemostasi

    Incidence and determinants of thrombotic and bleeding complications in patients with glioblastoma

    No full text
    Background Glioblastoma patients are considered to be at high risk of venous thromboembolism (VTE) and major bleeding (MB), although reliable incidence estimates are lacking. Moreover, the risk of arterial thromboembolism (ATE) in these patients is largely unknown. Our aim was to assess the cumulative incidence, predictors, and prognostic impact of VTE, ATE, and MB on subsequent complications and mortality. Methods Cohort study of 967 consecutive patients diagnosed with glioblastoma between 2004-2020 in two hospitals. Patients were followed from 6 months before date of histopathological glioblastoma diagnosis up to 2 years after, or until an outcome of interest (VTE, ATE, and MB) or death occurred, depending on the analysis. Cumulative incidences were estimated with death as competing risk. Cox regression was used to identify predictors and the prognostic impact. Results A total of 101 patients were diagnosed with VTE, 50 with ATE, and 126 with MB during a median follow-up of 15 months (interquartile range 9.0-22). The adjusted 1-year cumulative incidence of VTE was 7.5% (95% confidence interval [CI] 5.9-9.3), of ATE 4.1% (95% CI 3.0-5.6), and of MB 12% (95% CI 9.6-14). Older age, type of surgery, and performance status were predictors of VTE. Incident VTE during follow-up was associated with MB (adjusted HR 4.7, 95% CI 2.5-9.0). MB and VTE were associated with mortality (adjusted HR 1.7, 95% CI 1.3-2.1 and 1.3, 95% CI 1.0-1.7, respectively). Conclusion We found considerable incidences of VTE and MB in glioblastoma patients, with both complications associated with poorer prognosis. Our observations emphasize the need for prospective studies to determine optimal thromboprophylaxis and VTE treatment strategy in these patients.Clinical epidemiolog

    Tumor-expressed factor VII is associated with survival and regulates tumor progression in breast cancer

    Get PDF
    Cancer enhances the risk of venous thromboembolism, but a hypercoagulant microenvironment also promotes cancer progression. Although anticoagulants have been suggested as a potential anticancer treatment, clinical studies on the effect of such modalities on cancer progression have not yet been successful for unknown reasons. In normal physiology, complex formation between the subendothelial-expressed tissue factor (TF) and the blood-borne liver-derived factor VII (FVII) results in induction of the extrinsic coagulation cascade and intracellular signaling via protease-activated receptors (PARs). In cancer, TF is overexpressed and linked to poor prognosis. Here, we report that increased levels of FVII are also observed in breast cancer specimens and are associated with tumor progression and metastasis to the liver. In breast cancer cell lines, tumor-expressed FVII drives changes reminiscent of epithelial-to-mesenchymal transition (EMT), tumor cell invasion, and expression of the prometastatic genes, SNAI2 and SOX9. In vivo, tumorexpressed FVII enhanced tumor growth and liver metastasis. Surprisingly, liver-derived FVII appeared to inhibit metastasis. Finally, tumor-expressed FVII-induced prometastatic gene expression independent of TF but required a functional endothelial protein C receptor, whereas recombinant activated FVII acting via the canonical TF:PAR2 pathway inhibited prometastatic gene expression. Here, we propose that tumor-expressed FVII and liverderived FVII have opposing effects on EMT and metastasis.Surgical oncolog
    corecore