1,041 research outputs found

    Hydrogen molecule in a magnetic field: The lowest states of the Pi manifold and the global ground state of the parallel configuration

    Full text link
    The electronic structure of the hydrogen molecule in a magnetic field is investigated for parallel internuclear and magnetic field axes. The lowest states of the Π\Pi manifold are studied for spin singlet and triplet(Ms=−1)(M_s = -1) as well as gerade and ungerade parity for a broad range of field strengths 0≀B≀100a.u.0 \leq B \leq 100 a.u. For both states with gerade parity we observe a monotonous decrease in the dissociation energy with increasing field strength up to B=0.1a.u.B = 0.1 a.u. and metastable states with respect to the dissociation into two H atoms occur for a certain range of field strengths. For both states with ungerade parity we observe a strong increase in the dissociation energy with increasing field strength above some critical field strength BcB_c. As a major result we determine the transition field strengths for the crossings among the lowest 1ÎŁg^1\Sigma_g, 3ÎŁu^3\Sigma_u and 3Πu^3\Pi_u states. The global ground state for Bâ‰Č0.18a.u.B \lesssim 0.18 a.u. is the strongly bound 1ÎŁg^1\Sigma_g state. The crossings of the 1ÎŁg^1\Sigma_g with the 3ÎŁu^3\Sigma_u and 3Πu^3\Pi_u state occur at B≈0.18B \approx 0.18 and B≈0.39a.u.B \approx0.39 a.u., respectively. The transition between the 3ÎŁu^3\Sigma_u and 3Πu^3\Pi_u state occurs at B≈12.3a.u.B \approx 12.3 a.u. Therefore, the global ground state of the hydrogen molecule for the parallel configuration is the unbound 3ÎŁu^3\Sigma_u state for 0.18â‰ČBâ‰Č12.3a.u.0.18 \lesssim B \lesssim 12.3 a.u. The ground state for B≳12.3a.u.B \gtrsim 12.3 a.u. is the strongly bound 3Πu^3\Pi_u state. This result is of great relevance to the chemistry in the atmospheres of magnetic white dwarfs and neutron stars.Comment: submitted to Physical Review

    Exchange and correlation energies of ground states of atoms and molecules in strong magnetic fields

    Get PDF
    Using a Hartree-Fock mesh method and a configuration interaction approach based on a generalized Gaussian basis set we investigate the behaviour of the exchange and correlation energies of small atoms and molecules, namely th e helium and lithium atom as well as the hydrogen molecule, in the presence of a magnetic field covering the regime B=0-100a.u. In general the importance of the exchange energy to the binding properties of at oms or molecules increases strongly with increasing field strength. This is due to the spin-flip transitions and in particular due to the contributions of the tightly bound hydrogenic state s which are involved in the corresponding ground states of different symmetries. In contrast to the exchange energy the correlation energy becomes less relevant with increasing field strength. This holds for the individual configurations constituting the ground state and for the crossovers of the global ground state.Comment: 4 Figures acc.f.publ.in Phys.Rev.

    Reconstruction methods for acoustic particle detection in the deep sea using clusters of hydrophones

    Full text link
    This article focuses on techniques for acoustic noise reduction, signal filters and source reconstruction. For noise reduction, bandpass filters and cross correlations are found to be efficient and fast ways to improve the signal to noise ratio and identify a possible neutrino-induced acoustic signal. The reconstruction of the position of an acoustic point source in the sea is performed by using small-volume clusters of hydrophones (about 1 cubic meter) for direction reconstruction by a beamforming algorithm. The directional information from a number of such clusters allows for position reconstruction. The algorithms for data filtering, direction and position reconstruction are explained and demonstrated using simulated data.Comment: 7 pages, 13 figure

    Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection

    Full text link
    Calibration sources are an indispensable tool for all detectors. In acoustic particle detection the goal of a calibration source is to mimic neutrino signatures as expected from hadronic cascades. A simple and promising method for the emulation of neutrino signals are piezo ceramics. We will present results of measruements and simulations on these piezo ceramics.Comment: 5 pages, 5 figure

    Electromagnetic transitions of the helium atom in superstrong magnetic fields

    Full text link
    We investigate the electromagnetic transition probabilities for the helium atom embedded in a superstrong magnetic field taking into account the finite nuclear mass. We address the regime \gamma=100-10000 a.u. studying several excited states for each symmetry, i.e. for the magnetic quantum numbers 0,-1,-2,-3, positive and negative z parity and singlet and triplet symmetry. The oscillator strengths as a function of the magnetic field, and in particular the influence of the finite nuclear mass on the oscillator strengths are shown and analyzed.Comment: 10 pages, 8 figure

    Helium in superstrong magnetic fields

    Get PDF
    We investigate the helium atom embedded in a superstrong magnetic field gamma=100-10000 au. All effects due to the finite nuclear mass for vanishing pseudomomentum are taken into account. The influence and the magnitude of the different finite mass effects are analyzed and discussed. Within our full configuration interaction approach calculations are performed for the magnetic quantum numbers M=0,-1,-2,-3, singlet and triplet states, as well as positive and negative z parities. Up to six excited states for each symmetry are studied. With increasing field strength the number of bound states decreases rapidly and we remain with a comparatively small number of bound states for gamma=10^4 au within the symmetries investigated here.Comment: 16 pages, including 14 eps figures, submitted to Phys. Rev.

    Integration of Acoustic Detection Equipment into ANTARES

    Full text link
    The ANTARES group at the University of Erlangen is working towards the integration of a set of acoustic sensors into the ANTARES Neutrino Telescope. With this setup, tests of acoustic particle detection methods and background studies shall be performed. The ANTARES Neutrino Telescope, which is currently being constructed in the Mediterranean Sea, will be equipped with the infrastructure to accommodate a 3-dimensional array of photomultipliers for the detection of Cherenkov light. Within this infrastructure, the required resources for acoustic sensors are available: Bandwidth for the transmission of the acoustic data to the shore, electrical power for the off-shore electronics and physical space to install the acoustic sensors and to route the connecting cables (transmitting signals and power) into the electronics containers. It will be explained how the integration will be performed with minimal modifications of the existing ANTARES design and which setup is foreseen for the acquisition of the acoustic data.Comment: 5 pages, 1 figure, to appear in the proceedings of the 1st International ARENA Workshop, May 17-19th, 2005, DESY Zeuthen (Germany

    Testing Thermo-acoustic Sound Generation in Water with Proton and Laser Beams

    Full text link
    Experiments were performed at a proton accelerator and an infrared laser acility to investigate the sound generation caused by the energy deposition of pulsed particle and laser beams in water. The beams with an energy range of 1 PeV to 400 PeV per proton beam spill and up to 10 EeV for the laser pulse were dumped into a water volume and the resulting acoustic signals were recorded with pressure sensitive sensors. Measurements were performed at varying pulse energies, sensor positions, beam diameters and temperatures. The data is well described by simulations based on the thermo-acoustic model. This implies that the primary mechanism for sound generation by the energy deposition of particles propagating in water is the local heating of the media giving rise to an expansion or contraction of the medium resulting in a pressure pulse with bipolar shape. A possible application of this effect would be the acoustical detection of neutrinos with energies greater than 1 EeV.Comment: 5 pages, 2 figures, to appear in the proceedings of the 1st International ARENA Workshop, May 17-19th, 2005, DESY Zeuthe
    • 

    corecore