34,682 research outputs found

    Vulnerability assessment and protective effects of coastal vegetation during the 2004 tsunami in Sri Lanka

    Get PDF
    The tsunami of December 2004 caused extensive human and economic losses along many parts of the Sri Lankan coastline. Thanks to extensive national and international solidarity and support in the aftermath of the event, most people managed to restore their livelihoods completely but some households did not manage to recover completely from the impacts of the event. The differential in recovery highlighted the various vulnerabilities and coping capacities of communities exposed to the tsunami. Understanding the elements causing different vulnerabilities is crucial to reducing the impact of future events, yet capturing them comprehensively at the local level is a complex task. This research was conducted in a tsunami-affected area in southwestern Sri Lanka to evaluate firstly the role of coastal vegetation in buffering communities against the tsunami and secondly to capture the elements of vulnerability of affected communities. The area was chosen because of its complex landscape, including the presence of an inlet connecting the Maduganga estuary with the sea, and because of the presence of remaining patches of coastal vegetation. The vulnerability assessment was based on a comprehensive vulnerability framework and on the Sustainable Livelihoods Framework in order to detect inherent vulnerabilities of different livelihood groups. Our study resulted in the identification of fishery and labour-led households as the most vulnerable groups. Unsurprisingly, analyses showed that damages to houses and assets decreased quickly with increasing distance from the sea. It could also be shown that the Maduganga inlet channelled the energy of the waves, so that severe damages were observed at relatively large distances from the sea. Some reports after the tsunami stated that mangroves and other coastal vegetation protected the people living behind them. Detailed mapping of the coastal vegetation in the study area and subsequent linear regression revealed significant differences between three vegetation classes present in the area with regard to water level and damages to houses. As our region showed homogeneity in some important factors such as coastal topography, our results should only be generalised to comparable regions

    Exotic Axions

    Full text link
    We show that axion phenomenology may be significantly different than conventionally assumed in theories which exhibit late phase transitions (below the QCD scale). In such theories one can find multiple pseudoscalars with axion-like couplings to matter, including a string scale axion, whose decay constant far exceeds the conventional cosmological bound. Such theories have several dark matter candidates.Comment: 5 pages, 1 figure, References adde

    Brownian Motion Model of Quantization Ambiguity and Universality in Chaotic Systems

    Full text link
    We examine spectral equilibration of quantum chaotic spectra to universal statistics, in the context of the Brownian motion model. Two competing time scales, proportional and inversely proportional to the classical relaxation time, jointly govern the equilibration process. Multiplicity of quantum systems having the same semiclassical limit is not sufficient to obtain equilibration of any spectral modes in two-dimensional systems, while in three-dimensional systems equilibration for some spectral modes is possible if the classical relaxation rate is slow. Connections are made with upper bounds on semiclassical accuracy and with fidelity decay in the presence of a weak perturbation.Comment: 13 pages, 6 figures, submitted to Phys Rev

    Beyond the First Recurrence in Scar Phenomena

    Full text link
    The scarring effect of short unstable periodic orbits up to times of the order of the first recurrence is well understood. Much less is known, however, about what happens past this short-time limit. By considering the evolution of a dynamically averaged wave packet, we show that the dynamics for longer times is controlled by only a few related short periodic orbits and their interplay.Comment: 4 pages, 4 Postscript figures, submitted to Phys. Rev. Let

    Gauge/Anomaly Syzygy and Generalized Brane World Models of Supersymmetry Breaking

    Get PDF
    In theories in which SUSY is broken on a brane separated from the MSSM matter fields, supersymmetry breaking is naturally mediated in a variety of ways. Absent other light fields in the theory, gravity will mediate supersymmetry breaking through the conformal anomaly. If gauge fields propagate in the extra dimension they, too, can mediate supersymmetry breaking effects. The presence of gauge fields in the bulk motivates us to consider the effects of new messenger fields with holomorphic and non-holomorphic couplings to the supersymmetry breaking sector. These can lead to contributions to the soft masses of MSSM fields which dramatically alter the features of brane world scenarios of supersymmetry breaking. In particular, they can solve the negative slepton mass squared problem of anomaly mediation and change the predictions of gaugino mediation.Comment: 4 pages, RevTe

    Reduced Fine-Tuning in Supersymmetry with R-parity violation

    Get PDF
    Both electroweak precision measurements and simple supersymmetric extensions of the standard model prefer a mass of the Higgs boson less than the experimental lower limit of 114 GeV. We show that supersymmetric models with R parity violation and baryon number violation have a significant range of parameter space in which the Higgs dominantly decays to six jets. These decays are much more weakly constrained by current LEP analyses and would allow for a Higgs mass near that of the ZZ. In general, lighter scalar quark and other superpartner masses are allowed and the fine-tuning typically required to generate the measured scale of electroweak symmetry breaking is ameliorated. The Higgs would potentially be discovered at hadron colliders via the appearance of new displaced vertices. The lightest neutralino could be discovered by a scan of vertex-less events LEP I data.Comment: 5 pages, 2 figures. Significant detail added to the arguments regarding LEP limits - made more quantitative. Better figures used, plotting more physical quantities. Typos corrected and references updated. Conclusions unchange

    The Supersymmetric Ward-Takahashi Identity in 1-Loop Lattice Perturbation Theory. I. General Procedure

    Full text link
    The one-loop corrections to the lattice supersymmetric Ward-Takahashi identity (WTi) are investigated in the off-shell regime. In the Wilson formulation of the N=1 supersymmetric Yang-Mills (SYM) theory, supersymmetry (SUSY) is broken by the lattice, by the Wilson term and is softly broken by the presence of the gluino mass. However, the renormalization of the supercurrent can be realized in a scheme that restores the continuum supersymmetric WTi (once the on-shell condition is imposed). The general procedure used to calculate the renormalization constants and mixing coefficients for the local supercurrent is presented. The supercurrent not only mixes with the gauge invariant operator TμT_\mu. An extra mixing with other operators coming from the WTi appears. This extra mixing survives in the continuum limit in the off-shell regime and cancels out when the on-shell condition is imposed and the renormalized gluino mass is set to zero. Comparison with numerical results are also presented.Comment: 16 pages, 2 figures. Typos error correcte

    Electron-phonon bound states in graphene in a perpendicular magnetic field

    Full text link
    The spectrum of electron-phonon complexes in a monolayer graphene is investigated in the presence of a perpendicular quantizing magnetic field. Despite the small electron-phonon coupling, usual perturbation theory is inapplicable for calculation of the scattering amplitude near the threshold of the optical phonon emission. Our findings beyond perturbation theory show that the true spectrum near the phonon emission threshold is completely governed by new branches, corresponding to bound states of an electron and an optical phonon with a binding energy of the order of αω0\alpha \omega_{0} where α\alpha is the electron-phonon coupling and ω0\omega_{0} the phonon energy.Comment: To be published in Phys. Rev. Lett., 5 pages, 3 figures, 1 tabl
    • …
    corecore