41,522 research outputs found
Fully QED/relativistic theory of light pressure on free electrons by isotropic radiation
A relativistic/QED theory of light pressure on electrons by an isotropic, in
particular blackbody radiation predicts thermalization rates of free electrons
over entire span of energies available in the lab and the nature. The
calculations based on the QED Klein-Nishina theory of electron-photon
scattering and relativistic Fokker-Planck equation, show that the transition
from classical (Thompson) to QED (Compton) thermalization determined by the
product of electron energy and radiation temperature, is reachable under
conditions for controlled nuclear fusion, and predicts large acceleration of
electron thermalization in the Compton domain and strong damping of plasma
oscillations at the temperatures near plasma nuclear fusion.Comment: 9 pages, 2 figures. arXiv admin note: substantial text overlap with
arXiv:1410.695
Scalar Casimir Energies of Tetrahedra and Prisms
New results for scalar Casimir self-energies arising from interior modes are
presented for the three integrable tetrahedral cavities. Since the eigenmodes
are all known, the energies can be directly evaluated by mode summation, with a
point-splitting regulator, which amounts to evaluation of the cylinder kernel.
The correct Weyl divergences, depending on the volume, surface area, and the
edges, are obtained, which is strong evidence that the counting of modes is
correct. Because there is no curvature, the finite part of the quantum energy
may be unambiguously extracted. Cubic, rectangular parallelepipedal, triangular
prismatic, and spherical geometries are also revisited. Dirichlet and Neumann
boundary conditions are considered for all geometries. Systematic behavior of
the energy in terms of geometric invariants for these different cavities is
explored. Smooth interpolation between short and long prisms is further
demonstrated. When scaled by the ratio of the volume to the surface area, the
energies for the tetrahedra and the prisms of maximal isoareal quotient lie
very close to a universal curve. The physical significance of these results is
discussed.Comment: 27 pages, 11 figure
Localization of Eigenfunctions in the Stadium Billiard
We present a systematic survey of scarring and symmetry effects in the
stadium billiard. The localization of individual eigenfunctions in Husimi phase
space is studied first, and it is demonstrated that on average there is more
localization than can be accounted for on the basis of random-matrix theory,
even after removal of bouncing-ball states and visible scars. A major point of
the paper is that symmetry considerations, including parity and time-reversal
symmetries, enter to influence the total amount of localization. The properties
of the local density of states spectrum are also investigated, as a function of
phase space location. Aside from the bouncing-ball region of phase space,
excess localization of the spectrum is found on short periodic orbits and along
certain symmetry-related lines; the origin of all these sources of localization
is discussed quantitatively and comparison is made with analytical predictions.
Scarring is observed to be present in all the energy ranges considered. In
light of these results the excess localization in individual eigenstates is
interpreted as being primarily due to symmetry effects; another source of
excess localization, scarring by multiple unstable periodic orbits, is smaller
by a factor of .Comment: 31 pages, including 10 figure
Refraction of a Gaussian Seaway
Refraction of a Longuet-Higgins Gaussian sea by random ocean currents creates
persistent local variations in average energy and wave action. These variations
take the form of lumps or streaks, and they explicitly survive dispersion over
wavelength and incoming wave propagation direction. Thus, the uniform sampling
assumed in the venerable Longuet-Higgins theory does not apply following
refraction by random currents. Proper handling of the non-uniform sampling
results in greatly increased probability of freak wave formation. The present
theory represents a synthesis of Longuet-Higgins Gaussian seas and the
refraction model of White and Fornberg, which considered the effect of currents
on a plane wave incident seaway. Using the linearized equations for deep ocean
waves, we obtain quantitative predictions for the increased probability of
freak wave formation when the refractive effects are taken into account. The
crest height or wave height distribution depends primarily on the ``freak
index", gamma, which measures the strength of refraction relative to the
angular spread of the incoming sea. Dramatic effects are obtained in the tail
of this distribution even for the modest values of the freak index that are
expected to occur commonly in nature. Extensive comparisons are made between
the analytical description and numerical simulations.Comment: 18 pages, 10 figure
- …
