763 research outputs found

    Regularized overlap and the chiral determinant

    Get PDF
    We study the relationship between the continuum overlap and its corresponding chiral determinant, showing that the former amounts to an unregularised version of the latter. We then construct a regularised continuum overlap, and consider the chiral anomalies that follow therefrom. The relation between these anomalies and the ones derived from the formal (i.e., unregularised) overlap is elucidated.Comment: 14 pages, late

    Transverse Fivebranes in Matrix Theory

    Full text link
    M-theory on the maximally supersymmetric plane wave background of eleven-dimensional supergravity admits spherical BPS transverse M5-branes with zero light-cone energy. We give direct evidence that the single M5-brane state corresponds to the trivial (X=0) classical vacuum in the large N limit of the plane wave matrix theory. In particular, we show that the linear fluctuation spectrum of the spherical fivebrane matches exactly with the set of exactly protected excited states about the X=0 vacuum in the matrix model. These states include geometrical fluctuations of the sphere, excitations of the worldvolume two-form field, and fermion excitations. In addition, we propose a description of multiple fivebrane states in terms of matrix model vacua. Finally, we discuss how to obtain the continuum D2/M2 and NS5/M5 theories on spheres from the matrix model. The matrix model can be viewed as a regularization for these theories.Comment: Latex file, 2 eps figures, 22 pages; v2: typo correcte

    Clock drawing performance in cognitively normal elderly

    Get PDF
    The Clock Drawing Test (CDT) is a common neuropsychological measure sensitive to cognitive changes and functional skills (e.g., driving test performance) among older adults. However, normative data have not been adequately developed. We report the distribution of CDT scores using three common scoring systems [Mendez, M. F., Ala, T., & Underwood, K. L. (1992). Development of scoring criteria for the Clock Drawing Task in Alzheimer's Disease. Journal of the American Geriatrics Society, 40, 1095-1099; Cahn, D. A., Salmon, D. P., Monsch, A. U., Butters, N., Wiederholt, W. C., & Corey-Bloom, J. (1996). Screening for dementia of the Alzheimer type in the community: The utility of the Clock Drawing Test. Archives of Clinical Neuropsychology, 11(6), 529-539], among 207 cognitively normal elderly. The systems were well correlated, took little time to use, and had high inter-rater reliability. We found statistically significant differences in CDT scores based on age and WRAT-3 Reading score, a marker of education quality. We present means, standard deviations, and t- and z-scores based on these subgroups. We found that "normal" CDT performance includes a wider distribution of scores than previously reported. Our results may serve as useful comparisons for clinicians wishing to know whether their patients perform in the general range of cognitively normal elderly. © 2007 National Academy of Neuropsychology

    Supersymmetric Deformations of Type IIB Matrix Model as Matrix Regularization of N=4 SYM

    Full text link
    We construct a Q=1\mathcal{Q}=1 supersymmetry and U(1)5U(1)^5 global symmetry preserving deformation of the type IIB matrix model. This model, without orbifold projection, serves as a nonperturbative regularization for N=4\mathcal{N}=4 supersymmetric Yang-Mills theory in four Euclidean dimensions. Upon deformation, the eigenvalues of the bosonic matrices are forced to reside on the surface of a hypertorus. We explicitly show the relation between the noncommutative moduli space of the deformed matrix theory and the Brillouin zone of the emergent lattice theory. This observation makes the transmutation of the moduli space into the base space of target field theory clearer. The lattice theory is slightly nonlocal, however the nonlocality is suppressed by the lattice spacing. In the classical continuum limit, we recover the N=4\mathcal{N}=4 SYM theory. We also discuss the result in terms of D-branes and interpret it as collective excitations of D(-1) branes forming D3 branes.Comment: Version 2: Extended discussion of moduli space, added a referenc

    Diffraction Symmetry in Crystalline, Close-Packed C60

    Get PDF
    We have grown crystals of the carbon structure C60 by sublimation. In contrast to solution-grown crystals, the sublimed crystals have long range order with no evidence of solvent inclusions. Sublimed C60 forms three dimensional, faceted crystals with a close-packed, face-centered cubic unit cell. We have refined a crystal structure using the "soccer ball" model of the C60 molecule. The results indicate that the C60 molecule has the expected spherical shape, however the data are not sufficiently accurate to unambiguously determine atomic positions

    D-Theory: Field Theory via Dimensional Reduction of Discrete Variables

    Get PDF
    A new non-perturbative approach to quantum field theory --- D-theory --- is proposed, in which continuous classical fields are replaced by discrete quantized variables which undergo dimensional reduction. The 2-d classical O(3) model emerges from the (2+1)-d quantum Heisenberg model formulated in terms of quantum spins. Dimensional reduction is demonstrated explicitly by simulating correlation lengths up to 350,000 lattice spacings using a loop cluster algorithm. In the framework of D-theory, gauge theories are formulated in terms of quantum links --- the gauge analogs of quantum spins. Quantum links are parallel transporter matrices whose elements are non-commuting operators. They can be expressed as bilinears of anticommuting fermion constituents. In quantum link models dimensional reduction to four dimensions occurs, due to the presence of a 5-d Coulomb phase, whose existence is confirmed by detailed simulations using standard lattice gauge theory. Using Shamir's variant of Kaplan's fermion proposal, in quantum link QCD quarks appear as edge states of a 5-d slab. This naturally protects their chiral symmetries without fine-tuning. The first efficient cluster algorithm for a gauge theory with a continuous gauge group is formulated for the U(1) quantum link model. Improved estimators for Wilson loops are constructed, and dimensional reduction to ordinary lattice QED is verified numerically.Comment: 15 pages, LaTeX, including 9 encapsulated postscript figures. Contribution to Lattice 97 by 5 authors, to appear in Nuclear Physics B (Proceeding Supplements). Requires psfig.tex and espcrc2.st

    Effective Lagrangian for strongly coupled domain wall fermions

    Get PDF
    We derive the effective Lagrangian for mesons in lattice gauge theory with domain-wall fermions in the strong-coupling and large-N_c limits. We use the formalism of supergroups to deal with the Pauli-Villars fields, needed to regulate the contributions of the heavy fermions. We calculate the spectrum of pseudo-Goldstone bosons and show that domain wall fermions are doubled and massive in this regime. Since we take the extent and lattice spacing of the fifth dimension to infinity and zero respectively, our conclusions apply also to overlap fermions.Comment: 26 pp. RevTeX and 3 figures; corrected error in symmetry breaking scheme and added comments to discussio
    corecore