45,438 research outputs found

    Suppression of Dephasing of Optically Trapped Atoms

    Full text link
    Ultra-cold atoms trapped in an optical dipole trap and prepared in a coherent superposition of their hyperfine ground states, decohere as they interact with their environment. We demonstrate than the loss in coherence in an "echo" experiment, which is caused by mechanisms such as Rayleigh scattering, can be suppressed by the use of a new pulse sequence. We also show that the coherence time is then limited by mixing to other vibrational levels in the trap and by the finite lifetime of the internal quantum states of the atoms

    Shot noise in frustrated single-electron arrays

    Full text link
    We have carried out numerical simulations of shot noise in 2D arrays of single-electron islands with random background charges. The results show that in contrast with the 1D arrays, at low currents the current noise is strongly colored, and its spectral density levels off at very low frequencies. The Fano factor may be much larger than unity, due to the remnants of single-electron/hole avalanches. However, even very small thermal fluctuations reduce the Fano factor below 1 for almost any bias.Comment: 3 pages, 4 figure

    Warped Domain Wall Fermions

    Full text link
    We consider Kaplan's domain wall fermions in the presence of an Anti-de Sitter (AdS) background in the extra dimension. Just as in the flat space case, in a completely vector-like gauge theory defined after discretizing this extra dimension, the spectrum contains a very light charged fermion whose chiral components are localized at the ends of the extra dimensional interval. The component on the IR boundary of the AdS space can be given a large mass by coupling it to a neutral fermion via the Higgs mechanism. In this theory, gauge invariance can be restored either by taking the limit of infinite proper length of the extra dimension or by reducing the AdS curvature radius towards zero. In the latter case, the Kaluza-Klein modes stay heavy and the resulting classical theory approaches a chiral gauge theory, as we verify numerically. Potential difficulties for this approach could arise from the coupling of the longitudinal mode of the light gauge boson, which has to be treated non-perturbatively

    Development of a severe local storm prediction system: A 60-day test of a mesoscale primitive equation model

    Get PDF
    The progress and problems associated with the dynamical forecast system which was developed to predict severe storms are examined. The meteorological problem of severe convective storm forecasting is reviewed. The cascade hypothesis which forms the theoretical core of the nested grid dynamical numerical modelling system is described. The dynamical and numerical structure of the model used during the 1978 test period is presented and a preliminary description of a proposed multigrid system for future experiments and tests is provided. Six cases from the spring of 1978 are discussed to illustrate the model's performance and its problems. Potential solutions to the problems are examined
    corecore