1,313 research outputs found

    Environmental effect on egress simulation

    Get PDF
    Abstract. Evacuation and egress simulations can be a useful tool for studying the effect of design decisions on the flow of agent movement. This type of simulation can be used to determine before hand the effect of design decisions and enable exploration of potential improvements. In this work, we study at how agent egress is affected by the environment in real world and large scale virtual environments and investigate metrics to analyze the flow. Our work differs from many evacuation systems in that we support grouping restrictions between agents (e.g., families or other social groups traveling together), and model scenarios with multiple modes of transportation with physically realistic dynamics (e.g., individuals walk from a building to their own cars and leave only when all people in the group arrive).

    Severe Aortic Stenosis and Coronary Artery Disease—Implications for Management in the Transcatheter Aortic Valve Replacement Era A Comprehensive Review

    Get PDF
    Management of coronary artery disease (CAD) in patients with severe aortic stenosis (AS) referred for transcatheter aortic valve replacement (TAVR) is posing challenges. Due to limited and heterogeneous data on the prevalence and clinical impact of CAD on the outcomes of TAVR and the management strategies for CAD in patients undergoing TAVR, we performed a comprehensive review of the literature. Significant CAD is present in 40% to 75% of patients undergoing TAVR. The impact of CAD on outcomes after TAVR remains understudied. Based on existing data, not all patients require revascularization before TAVR. Percutaneous coronary intervention (PCI) should be considered for severely stenotic lesions in proximal coronaries that subtend a large area of myocardium at risk. Ongoing studies randomizing patients to surgical or percutaneous management strategies for severe AS will help provide valuable data regarding the impact of CAD on TAVR outcomes, the role of PCI, and its timing in relation to TAVR

    Use of prasugrel vs clopidogrel and outcomes in patients with acute coronary syndrome undergoing percutaneous coronary intervention in contemporary clinical practice: Results from the PROMETHEUS study

    Get PDF
    Background and objectivesWe sought to determine the frequency of use and association between prasugrel and outcomes in acute coronary syndrome patients undergoing percutaneous coronary intervention (PCI) in clinical practice

    Follow-up analyses to the O3 LIGO-Virgo-KAGRA lensing searches

    Get PDF
    Along their path from source to observer, gravitational waves may be gravitationally lensed by massive objects leading to distortion in the signals. Searches for these distortions amongst the observed signals from the current detector network have already been carried out, though there have as yet been no confident detections. However, predictions of the observation rate of lensing suggest detection in the future is a realistic possibility. Therefore, preparations need to be made to thoroughly investigate the candidate lensed signals. In this work, we present some follow-up analyses that could be applied to assess the significance of such events and ascertain what information may be extracted about the lens-source system by applying these analyses to a number of O3 candidate events, even if these signals did not yield a high significance for any of the lensing hypotheses. These analyses cover the strong lensing, millilensing, and microlensing regimes. Applying these additional analyses does not lead to any additional evidence for lensing in the candidates that have been examined. However, it does provide important insight into potential avenues to deal with high-significance candidates in future observations

    Ultrathin compound semiconductor on insulator layers for high performance nanoscale transistors

    Full text link
    Over the past several years, the inherent scaling limitations of electron devices have fueled the exploration of high carrier mobility semiconductors as a Si replacement to further enhance the device performance. In particular, compound semiconductors heterogeneously integrated on Si substrates have been actively studied, combining the high mobility of III-V semiconductors and the well-established, low cost processing of Si technology. This integration, however, presents significant challenges. Conventionally, heteroepitaxial growth of complex multilayers on Si has been explored. Besides complexity, high defect densities and junction leakage currents present limitations in the approach. Motivated by this challenge, here we utilize an epitaxial transfer method for the integration of ultrathin layers of single-crystalline InAs on Si/SiO2 substrates. As a parallel to silicon-on-insulator (SOI) technology14,we use the abbreviation "XOI" to represent our compound semiconductor-on-insulator platform. Through experiments and simulation, the electrical properties of InAs XOI transistors are explored, elucidating the critical role of quantum confinement in the transport properties of ultrathin XOI layers. Importantly, a high quality InAs/dielectric interface is obtained by the use of a novel thermally grown interfacial InAsOx layer (~1 nm thick). The fabricated FETs exhibit an impressive peak transconductance of ~1.6 mS/{\mu}m at VDS=0.5V with ON/OFF current ratio of greater than 10,000 and a subthreshold swing of 107-150 mV/decade for a channel length of ~0.5 {\mu}m
    • 

    corecore