30 research outputs found

    Secondary sonic boom

    Get PDF
    This thesis aims to resolve some open questions about sonic boom, and particularly secondary sonic boom, which arises from long-range propagation in a non-uniform atmosphere. We begin with an introduction to sonic boom modelling and outline the current state of research. We then proceed to review standard results of gas dynamics and we prove a new theorem, similar to Kelvin's circulation theorem, but valid in the presence of shocks. We then present the definitions used in sonic boom theory, in the framework of linear acoustics for stationary and for moving non-uniform media. We present the wavefront patterns and ray patterns for a series of analytical examples for propagation from steadily moving supersonic point sources in stratified media. These examples elucidate many aspects of the long-range propagation of sound and in particular of secondary sonic boom. The formation of `fold caustics' of boomrays is a key feature. The focusing of linear waves and weak shock waves is compared. Next, in order to address the consistent approximation of sonic boom amplitudes, we consider steady motion of supersonic thin aerofoils and slender axisymmetric bodies in a uniform medium, and we use the method of matched asymptotic expansions (MAE) to give a consistent derivation of Whitham's model for nonlinear effects in primary boom analysis. Since for secondary boom, as for primary, the inclusion of nonlinearities is essential for a correct estimation of the amplitudes, we then study the paradigm problem of a thin aerofoil moving steadily in a weakly stratified medium with a horizontal wind. We again use MAE to calculate approximations of the Euler equations; this results in an inhomogeneous kinematic wave equation. Returning to the linear acoustics framework, for a point source that accelerates and decelerates through the sound speed in a uniform medium we calculate the wavefield in the `time-domain'. Certain other motions of interest are also illustrated. In the accelerating and in the manoeuvring motions fold caustics that are essentially the same as those from steady motions in stratified atmospheres again arise. We also manage to pinpoint a scenario where a `cusp caustic' of boomrays forms instead. For the accelerating motions the asymptotic analysis of the wavefield reveals the formation of singularities which are incompatible with linear theory; this suggests the re-introduction of nonlinear effects. However, it is a formidable task to solve such a nonlinear problem in two or three dimensions, so we solve a related one-dimensional problem instead. Its solution possesses an unexpectedly rich structure that changes as the strength of nonlinearity varies. In all cases however we find that the singularities of the linear problem are regularised by the nonlinearity

    The effect of local ventilation on airborne viral transmission in indoor spaces

    Full text link
    We incorporate local ventilation effects into a spatially dependent generalisation of the Wells--Riley model of airborne viral transmission. Aerosol production and removal through ventilation (global and local), biological deactivation, and gravitational settling as well as transport around a recirculating air-conditioning flow and turbulent mixing are modelled using an advection--diffusion--reaction equation. The local ventilation effects are compared with the equivalent global ventilation and we find that the streamlines of the airflow provide insight into when the global ventilation model is a good approximation. When the agreement between ventilation models is poor, we find that the global ventilation model generally overestimates the infection risk.Comment: 10 pages, 4 figures, submitted to the Journal of Fluid Mechanics as a Rapids articl

    Measuring glucose content in the aqueous humor

    Get PDF
    Many diabetics must measure their blood glucose levels regularly to maintain good health. In principle, one way of measuring the glucose concentration in the human body would be by measuring optically the glucose content of the aqueous humor in the eye. Lein Applied Diagnostics wish to assess whether this is feasible by a linear confocal scan with an LED source, or by supplementing such a system with other measurements

    Vitrifying multiple embryos in different arrangements does not alter the cooling rate

    Get PDF
    Vitrification is the most common method of cryopreservation of gametes in fertility clinics due to its improved survival rates compared to slow freezing techniques. For the Open Cryotop® vitrification device, the number of oocytes, or embryos, mounted onto a single device can vary. In this work, a mathematical model is developed for the cooling of oocytes and embryos (samples). The model is solved computationally, to investigate whether varying the number of samples mounted onto the Open Cryotop® affects the cooling rates, and consequently the survival rates, of vitrified samples. Several realistic spatial arrangements of samples are examined, determining their temperature over time. In this way we quantify the effect of spatial arrangement on the cooling rate. Our results indicate that neither the spatial arrangement nor the number of mounted samples has a large effect on cooling rates, so long as the volume of the cryoprotectant remains minimal. The time taken for cooling is found to be on the order of half a second, or less, regardless of the spatial arrangement or number of mounted samples. Hence, rapid cooling can be achieved for any number or arrangement of samples, as long as device manufacturer guidelines are adhered to

    Mechanochemical models for calcium waves in embryonic epithelia

    Get PDF
    In embryogenesis, epithelial cells, acting as individual entities or as coordinated aggregates in a tissue, exhibit strong coupling between chemical signalling and mechanical responses to internally or externally applied stresses. Intercellular communication in combination with such coordination of morphogenetic movements can lead to drastic modifications in the calcium distribution in the cells. In this paper we extend the recent mechanochemical model in [K. Kaouri, P.K. Maini, P.A. Skourides, N. Christodoulou, S.J. Chapman. J. Math. Biol., 78 (2019) 2059–2092], for an epithelial continuum in one dimension, to a more realistic multi-dimensional case. The resulting parametrised governing equations consist of an advection-diffusion-reaction system for calcium signalling coupled with active-stress linear viscoelasticity and equipped with pure Neumann boundary conditions. We implement a mixed finite element method for the simulation of this complex multiphysics problem. Special care is taken in the treatment of the stress-free boundary conditions for the viscoelasticity in order to eliminate rigid motions from the space of admissible displacements. The stability and solvability of the continuous weak formulation is shown using fixed-point theory. We investigate numerically the solutions of this system and show that solitary waves and periodic wavetrains of calcium propagate through the embryonic epithelial sheet. We analyse the bifurcations of the system guided by the bifurcation analysis of the one-dimensional model. We also demonstrate the nucleation of calcium sparks into synchronous calcium waves coupled with contraction. This coupled model can be employed to gain insights into recent experimental observations in the context of embryogenesis, but also in other biological systems such as cancer cells, wound healing, keratinocytes, or white blood cells
    corecore