15 research outputs found

    Bound-state Effects on Top Quark Production at Hadron Colliders

    Get PDF
    We study bound-state effects on the t\bar{t} production cross section in the threshold region at hadron colliders. The bound-state effects are important particularly at the LHC where the gluon fusion is the dominant subprocess. Due to the formation of t\bar{t} resonances in the J=0 color-singlet channel of gg \to t\bar{t} and the large width of the top quark, the t\bar{t} invariant-mass distribution peaks at a few GeV below the t\bar{t} threshold, and it is significantly enhanced over the naive NLO prediction until several GeV above the threshold. We present predictions of the t\bar{t} invariant-mass distribution which incorporate both the bound-state effects and initial-state radiations up to NLO. The bound-state effects would lead to a substantial deformation of top-quark kinematical distributions in the threshold region.Comment: 14 page, 6 figures; hard-vertex factors modified; cross sections changed accordingly; all qualitative features unchanged, nevertheless; discussion and references added; version to appear in PL

    Fundamental physics activities with pulsed neutron at J-PARC(BL05)

    Full text link
    "Neutron Optics and Physics (NOP/ BL05)" at MLF in J-PARC is a beamline for studies of fundamental physics. The beamline is divided into three branches so that different experiments can be performed in parallel. These beam branches are being used to develop a variety of new projects. We are developing an experimental project to measure the neutron lifetime with total uncertainty of 1 s (0.1%). The neutron lifetime is an important parameter in elementary particle and astrophysics. Thus far, the neutron lifetime has been measured by several groups; however, different values are obtained from different measurement methods. This experiment is using a method with different sources of systematic uncertainty than measurements conducted to date. We are also developing a source of pulsed ultra-cold neutrons (UCNs) produced from a Doppler shifter are available at the unpolarized beam branch. We are developing a time focusing device for UCNs, a so called "rebuncher", which can increase UCN density from a pulsed UCN source. At the low divergence beam branch, an experiment to search an unknown intermediate force with nanometer range is performed by measuring the angular dependence of neutron scattering by noble gases. Finally the beamline is also used for the research and development of optical elements and detectors. For example, a position sensitive neutron detector that uses emulsion to achieve sub-micrometer resolution is currently under development. We have succeeded in detecting cold and ultra-cold neutrons using the emulsion detector.Comment: 9 pages, 5 figures, Proceedings of International Conference on Neutron Optics (NOP2017

    New project for precise neutron lifetime measurement at J-PARC

    No full text
    The decay lifetime of free neutrons (∼880 s) is an important parameter of the weak interaction and for Big Bang Nucleosynthesis. However, results of measurements currently show discrepancies depending on the method used. As most experiments nowadays employ ultra cold neutrons, we have developed a new cold-beam experiment which we perform at the Japan Proton Accelerator Research Complex. As a special feature, a polarized neutron beam is bunched by a spin flip chopper. A time projection chamber operated with He and CO2 gas, including a well-controlled amount of 3He, is used for detection of the beta-decays and simultaneous determination of the beam intensity. Using the data between 2014 and 2016, we evaluated our first, preliminary result of the neutron lifetime as 896 ± 10(stat.) −10+14(sys.) s. We plan several upgrades to achieve our precision goal of 1 s

    New project for precise neutron lifetime measurement at J-PARC

    Get PDF
    The decay lifetime of free neutrons (∼880 s) is an important parameter of the weak interaction and for Big Bang Nucleosynthesis. However, results of measurements currently show discrepancies depending on the method used. As most experiments nowadays employ ultra cold neutrons, we have developed a new cold-beam experiment which we perform at the Japan Proton Accelerator Research Complex. As a special feature, a polarized neutron beam is bunched by a spin flip chopper. A time projection chamber operated with He and CO2 gas, including a well-controlled amount of 3He, is used for detection of the beta-decays and simultaneous determination of the beam intensity. Using the data between 2014 and 2016, we evaluated our first, preliminary result of the neutron lifetime as 896 ± 10(stat.) −10+14(sys.) s. We plan several upgrades to achieve our precision goal of 1 s

    The International Linear Collider: Report to Snowmass 2021

    No full text
    The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community
    corecore